BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 18848584)

  • 1. Glyoxalase II does not support methylglyoxal detoxification but serves as a general trypanothione thioesterase in African trypanosomes.
    Wendler A; Irsch T; Rabbani N; Thornalley PJ; Krauth-Siegel RL
    Mol Biochem Parasitol; 2009 Jan; 163(1):19-27. PubMed ID: 18848584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glyoxalase II of African trypanosomes is trypanothione-dependent.
    Irsch T; Krauth-Siegel RL
    J Biol Chem; 2004 May; 279(21):22209-17. PubMed ID: 14976196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalysis and structural properties of Leishmania infantum glyoxalase II: trypanothione specificity and phylogeny.
    Silva MS; Barata L; Ferreira AE; Romão S; Tomás AM; Freire AP; Cordeiro C
    Biochemistry; 2008 Jan; 47(1):195-204. PubMed ID: 18052346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glyoxalase pathway in protozoan parasites.
    Sousa Silva M; Ferreira AE; Gomes R; Tomás AM; Ponces Freire A; Cordeiro C
    Int J Med Microbiol; 2012 Oct; 302(4-5):225-9. PubMed ID: 22901378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tryparedoxin-dependent peroxidase protects African trypanosomes from membrane damage.
    Diechtierow M; Krauth-Siegel RL
    Free Radic Biol Med; 2011 Aug; 51(4):856-68. PubMed ID: 21640819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme.
    Ariza A; Vickers TJ; Greig N; Armour KA; Dixon MJ; Eggleston IM; Fairlamb AH; Bond CS
    Mol Microbiol; 2006 Feb; 59(4):1239-48. PubMed ID: 16430697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enlightening the molecular basis of trypanothione specificity in trypanosomatids: mutagenesis of Leishmania infantum glyoxalase II.
    Barata L; Sousa Silva M; Schuldt L; Ferreira AE; Gomes RA; Tomás AM; Weiss MS; Ponces Freire A; Cordeiro C
    Exp Parasitol; 2011 Dec; 129(4):402-8. PubMed ID: 21864532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative assessment of the glyoxalase pathway in Leishmania infantum as a therapeutic target by modelling and computer simulation.
    Sousa Silva M; Ferreira AE; Tomás AM; Cordeiro C; Ponces Freire A
    FEBS J; 2005 May; 272(10):2388-98. PubMed ID: 15885089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glyoxalase pathway of trypanosomatid parasites: a promising chemotherapeutic target.
    Chauhan SC; Padmanabhan PK; Madhubala R
    Curr Drug Targets; 2008 Nov; 9(11):957-65. PubMed ID: 18991608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylglyoxal metabolism in trypanosomes and leishmania.
    Wyllie S; Fairlamb AH
    Semin Cell Dev Biol; 2011 May; 22(3):271-7. PubMed ID: 21310261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The parasite-specific trypanothione metabolism of trypanosoma and leishmania.
    Krauth-Siegel RL; Meiering SK; Schmidt H
    Biol Chem; 2003 Apr; 384(4):539-49. PubMed ID: 12751784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trypanothione-dependent glyoxalase I in Trypanosoma cruzi.
    Greig N; Wyllie S; Vickers TJ; Fairlamb AH
    Biochem J; 2006 Dec; 400(2):217-23. PubMed ID: 16958620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of Trypanosoma brucei trypanothione synthetase as drug target.
    Comini MA; Guerrero SA; Haile S; Menge U; Lünsdorf H; Flohé L
    Free Radic Biol Med; 2004 May; 36(10):1289-302. PubMed ID: 15110394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glyoxalase pathway: the first hundred years... and beyond.
    Sousa Silva M; Gomes RA; Ferreira AE; Ponces Freire A; Cordeiro C
    Biochem J; 2013 Jul; 453(1):1-15. PubMed ID: 23763312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trypanothione efficiently intercepts nitric oxide as a harmless iron complex in trypanosomatid parasites.
    Bocedi A; Dawood KF; Fabrini R; Federici G; Gradoni L; Pedersen JZ; Ricci G
    FASEB J; 2010 Apr; 24(4):1035-42. PubMed ID: 19952282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trypanothione-dependent synthesis of deoxyribonucleotides by Trypanosoma brucei ribonucleotide reductase.
    Dormeyer M; Reckenfelderbäumer N; Ludemann H; Krauth-Siegel RL
    J Biol Chem; 2001 Apr; 276(14):10602-6. PubMed ID: 11150302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The trypanothione system.
    Krauth-Siegel LR; Comini MA; Schlecker T
    Subcell Biochem; 2007; 44():231-51. PubMed ID: 18084897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dithiol glutaredoxins of african trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism.
    Ceylan S; Seidel V; Ziebart N; Berndt C; Dirdjaja N; Krauth-Siegel RL
    J Biol Chem; 2010 Nov; 285(45):35224-37. PubMed ID: 20826822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trypanothione biosynthesis in Leishmania major.
    Oza SL; Shaw MP; Wyllie S; Fairlamb AH
    Mol Biochem Parasitol; 2005 Jan; 139(1):107-16. PubMed ID: 15610825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the essentiality of the bifunctional trypanothione synthetase-amidase in Trypanosoma brucei using chemical and genetic methods.
    Wyllie S; Oza SL; Patterson S; Spinks D; Thompson S; Fairlamb AH
    Mol Microbiol; 2009 Nov; 74(3):529-40. PubMed ID: 19558432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.