These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18848625)

  • 1. Rhamnose catabolism in Bacteroides thetaiotaomicron is controlled by the positive transcriptional regulator RhaR.
    Patel EH; Paul LV; Patrick S; Abratt VR
    Res Microbiol; 2008; 159(9-10):678-84. PubMed ID: 18848625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of the rhamnose catabolism regulatory protein, RhaR: a novel mechanism for metronidazole resistance in Bacteroides thetaiotaomicron.
    Patel EH; Paul LV; Casanueva AI; Patrick S; Abratt VR
    J Antimicrob Chemother; 2009 Aug; 64(2):267-73. PubMed ID: 19525515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A regulatory cascade in the induction of rhaBAD.
    Egan SM; Schleif RF
    J Mol Biol; 1993 Nov; 234(1):87-98. PubMed ID: 8230210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis.
    Hirooka K; Kodoi Y; Satomura T; Fujita Y
    J Bacteriol; 2015 Dec; 198(5):830-45. PubMed ID: 26712933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional activation of quinoline degradation operons of Pseudomonas putida 86 by the AraC/XylS-type regulator OxoS and cross-regulation of the PqorM promoter by XylS.
    Carl B; Fetzner S
    Appl Environ Microbiol; 2005 Dec; 71(12):8618-26. PubMed ID: 16332855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel modified version of nonphosphorylated sugar metabolism--an alternative L-rhamnose pathway of Sphingomonas sp.
    Watanabe S; Makino K
    FEBS J; 2009 Mar; 276(6):1554-67. PubMed ID: 19187228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in the mechanism of the allosteric l-rhamnose responses of the AraC/XylS family transcription activators RhaS and RhaR.
    Kolin A; Balasubramaniam V; Skredenske JM; Wickstrum JR; Egan SM
    Mol Microbiol; 2008 Apr; 68(2):448-61. PubMed ID: 18366439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-induction of the L-fucose system by L-rhamnose in Escherichia coli.
    Chen YM; Tobin JF; Zhu Y; Schleif RF; Lin EC
    J Bacteriol; 1987 Aug; 169(8):3712-9. PubMed ID: 3301811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of transcriptional activators for thienamycin and cephamycin C biosynthetic genes within the thienamycin gene cluster from Streptomyces cattleya.
    Rodríguez M; Núñez LE; Braña AF; Méndez C; Salas JA; Blanco G
    Mol Microbiol; 2008 Aug; 69(3):633-45. PubMed ID: 19138192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of a putative regulatory gene, tadR, involved in aniline degradation in Delftia tsuruhatensis AD9.
    Geng L; Chen M; Liang Q; Liu W; Zhang W; Ping S; Lu W; Yan Y; Wang W; Takeo M; Lin M
    Arch Microbiol; 2009 Jul; 191(7):603-14. PubMed ID: 19504258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of ferulic catabolic genes in Pseudomonas fluorescens BF13: involvement of a MarR family regulator.
    Calisti C; Ficca AG; Barghini P; Ruzzi M
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):475-83. PubMed ID: 18575856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic fate of L-lactaldehyde derived from an alternative L-rhamnose pathway.
    Watanabe S; Piyanart S; Makino K
    FEBS J; 2008 Oct; 275(20):5139-49. PubMed ID: 18793327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription activation by the DNA-binding domain of the AraC family protein RhaS in the absence of its effector-binding domain.
    Wickstrum JR; Skredenske JM; Kolin A; Jin DJ; Fang J; Egan SM
    J Bacteriol; 2007 Jul; 189(14):4984-93. PubMed ID: 17513476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New regulatory gene that contributes to control of Bacteroides thetaiotaomicron starch utilization genes.
    Cho KH; Cho D; Wang GR; Salyers AA
    J Bacteriol; 2001 Dec; 183(24):7198-205. PubMed ID: 11717279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhamnose biosynthesis pathway supplies precursors for primary and secondary metabolism in Saccharopolyspora spinosa.
    Madduri K; Waldron C; Merlo DJ
    J Bacteriol; 2001 Oct; 183(19):5632-8. PubMed ID: 11544225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of regulatory protein levels on utilization of starch by Bacteroides thetaiotaomicron.
    D'Elia JN; Salyers AA
    J Bacteriol; 1996 Dec; 178(24):7180-6. PubMed ID: 8955400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo functional analysis of L-rhamnose metabolic pathway in Aspergillus niger: a tool to identify the potential inducer of RhaR.
    Khosravi C; Kun RS; Visser J; Aguilar-Pontes MV; de Vries RP; Battaglia E
    BMC Microbiol; 2017 Nov; 17(1):214. PubMed ID: 29110642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspergillus niger RhaR, a regulator involved in L-rhamnose release and catabolism.
    Gruben BS; Zhou M; Wiebenga A; Ballering J; Overkamp KM; Punt PJ; de Vries RP
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5531-40. PubMed ID: 24682478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positive regulation of the Escherichia coli L-rhamnose operon is mediated by the products of tandemly repeated regulatory genes.
    Tobin JF; Schleif RF
    J Mol Biol; 1987 Aug; 196(4):789-99. PubMed ID: 3316663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of the mpt operon in Listeria innocua by the ManR protein.
    Xue J; Miller KW
    Appl Environ Microbiol; 2007 Sep; 73(17):5648-52. PubMed ID: 17616620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.