These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18848701)

  • 1. A reproducibility study on musculotendinous stiffness quantification, using a new transportable ankle ergometer device.
    Lambertz D; Paiva MG; Marinho SM; Aragão RS; Barros KM; Manhães-de-Castro R; Khider N; Canon F
    J Biomech; 2008 Nov; 41(15):3270-3. PubMed ID: 18848701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new, transportable ergometer for the measurement of musculotendinous stiffness during wrist flexion.
    Stephan E; Delanaud S; Bisch C; Libert JP; Telliez F
    J Electromyogr Kinesiol; 2008 Feb; 18(1):160-8. PubMed ID: 16990011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in mechanical properties of human plantar flexor muscles in ageing.
    Ochala J; Lambertz D; Pousson M; Goubel F; Hoecke JV
    Exp Gerontol; 2004 Mar; 39(3):349-58. PubMed ID: 15036394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Measurement of the isometric dorsiflexion and plantar flexion force in the ankle joint].
    Göpfert B; Valderrabano V; Hintermann B; Wirz D
    Biomed Tech (Berl); 2005 Sep; 50(9):282-6. PubMed ID: 16185037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of muscle activity on musculotendinous stiffness quantification in stunted, prepubertal children.
    Lambertz D; Pérot C; Canon F; Dantas ML; Manhães-de-Castro R; Ferraz KM
    J Electromyogr Kinesiol; 2013 Oct; 23(5):1052-6. PubMed ID: 23932796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of musculotendinous stiffness in prepubertal children and adults, taking into account muscle activity.
    Lambertz D; Mora I; Grosset JF; Perot C
    J Appl Physiol (1985); 2003 Jul; 95(1):64-72. PubMed ID: 12626487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of the use of a novel soft tissue stiffness meter.
    Arokoski JP; Surakka J; Ojala T; Kolari P; Jurvelin JS
    Physiol Meas; 2005 Jun; 26(3):215-28. PubMed ID: 15798297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interday reliability of leg and ankle musculotendinous stiffness measures.
    McLachlan KA; Murphy AJ; Watsford ML; Rees S
    J Appl Biomech; 2006 Nov; 22(4):296-304. PubMed ID: 17293626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative measurement of spastic ankle joint stiffness using a manual device: a preliminary study.
    Kobayashi T; Leung AK; Akazawa Y; Tanaka M; Hutchins SW
    J Biomech; 2010 Jun; 43(9):1831-4. PubMed ID: 20189176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining the minimum number of passive stretches necessary to alter musculotendinous stiffness.
    Ryan ED; Herda TJ; Costa PB; Defreitas JM; Beck TW; Stout J; Cramer JT
    J Sports Sci; 2009 Jul; 27(9):957-61. PubMed ID: 19629845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariable Static Ankle Mechanical Impedance With Active Muscles.
    Lee H; Ho P; Rastgaar M; Krebs HI; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):44-52. PubMed ID: 24107970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Musculotendinous stiffness of triceps surae, maximal rate of force development, and vertical jump performance.
    Driss T; Lambertz D; Rouis M; Jaafar H; Vandewalle H
    Biomed Res Int; 2015; 2015():797256. PubMed ID: 25710026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex comparison of hamstring structural and material properties.
    Blackburn JT; Bell DR; Norcross MF; Hudson JD; Kimsey MH
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):65-70. PubMed ID: 19026473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a method for bimanual testing coordination of hand grip and load forces under isometric conditions.
    Jaric S; Knight CA; Collins JJ; Marwaha R
    J Electromyogr Kinesiol; 2005 Dec; 15(6):556-63. PubMed ID: 15939628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of strength training on musculotendinous stiffness in elderly individuals.
    Ochala J; Lambertz D; Van Hoecke J; Pousson M
    Eur J Appl Physiol; 2005 May; 94(1-2):126-33. PubMed ID: 15702341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a controlled-release ergometer for the measurement of musculotendinous stiffness of the knee flexors.
    Dugan EL; Newton RU; Doyle TL; Humphries B
    J Strength Cond Res; 2005 Nov; 19(4):959-63. PubMed ID: 16287363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cycle ergometer mounted on a standard force platform for three-dimensional pedal forces measurement during cycling.
    Mornieux G; Zameziati K; Mutter E; Bonnefoy R; Belli A
    J Biomech; 2006; 39(7):1296-303. PubMed ID: 15923007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of hamstring neuromechanical properties between healthy males and females and the influence of musculotendinous stiffness.
    Blackburn JT; Bell DR; Norcross MF; Hudson JD; Engstrom LA
    J Electromyogr Kinesiol; 2009 Oct; 19(5):e362-9. PubMed ID: 18829346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of long-term spaceflight on mechanical properties of muscles in humans.
    Lambertz D; Pérot C; Kaspranski R; Goubel F
    J Appl Physiol (1985); 2001 Jan; 90(1):179-88. PubMed ID: 11133909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Device, protocol and measurement of regional spinal stiffness.
    Kumar S; Stoll S
    J Electromyogr Kinesiol; 2011 Jun; 21(3):458-65. PubMed ID: 21306914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.