BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18848923)

  • 1. The role of auditory nerve innervation and dendritic filtering in shaping onset responses in the ventral cochlear nucleus.
    Sumner CJ; Meddis R; Winter IM
    Brain Res; 2009 Jan; 1247():221-34. PubMed ID: 18848923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency extent of two-tone facilitation in onset units in the ventral cochlear nucleus.
    Jiang D; Palmer AR; Winter IM
    J Neurophysiol; 1996 Jan; 75(1):380-95. PubMed ID: 8822565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encoding timing and intensity in the ventral cochlear nucleus of the cat.
    Rhode WS; Smith PH
    J Neurophysiol; 1986 Aug; 56(2):261-86. PubMed ID: 3760921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal and mean rate discharge patterns of single units in the dorsal cochlear nucleus of the anesthetized guinea pig.
    Stabler SE; Palmer AR; Winter IM
    J Neurophysiol; 1996 Sep; 76(3):1667-88. PubMed ID: 8890284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical models of cochlear nucleus onset neurons: I. Point neuron with many weak synaptic inputs.
    Kalluri S; Delgutte B
    J Comput Neurosci; 2003; 14(1):71-90. PubMed ID: 12435925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of ventral cochlear nucleus onset and chopper units as a function of signal bandwidth.
    Palmer AR; Jiang D; Marshall DH
    J Neurophysiol; 1996 Feb; 75(2):780-94. PubMed ID: 8714652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discharge properties of identified cochlear nucleus neurons and auditory nerve fibers in response to repetitive electrical stimulation of the auditory nerve.
    Babalian AL; Ryugo DK; Rouiller EM
    Exp Brain Res; 2003 Dec; 153(4):452-60. PubMed ID: 12955378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Onset neurones in the anteroventral cochlear nucleus project to the dorsal cochlear nucleus.
    Arnott RH; Wallace MN; Shackleton TM; Palmer AR
    J Assoc Res Otolaryngol; 2004 Jun; 5(2):153-70. PubMed ID: 15357418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Summation of spatiotemporal input patterns in leaky integrate-and-fire neurons: application to neurons in the cochlear nucleus receiving converging auditory nerve fiber input.
    Kuhlmann L; Burkitt AN; Paolini A; Clark GM
    J Comput Neurosci; 2002; 12(1):55-73. PubMed ID: 11932560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiate and Planar Multipolar Neurons of the Mouse Anteroventral Cochlear Nucleus: Intrinsic Excitability and Characterization of their Auditory Nerve Input.
    Xie R; Manis PB
    Front Neural Circuits; 2017; 11():77. PubMed ID: 29093666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computer model of a cochlear-nucleus stellate cell: responses to amplitude-modulated and pure-tone stimuli.
    Hewitt MJ; Meddis R; Shackleton TM
    J Acoust Soc Am; 1992 Apr; 91(4 Pt 1):2096-109. PubMed ID: 1317896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tonotopic Optimization for Temporal Processing in the Cochlear Nucleus.
    Oline SN; Ashida G; Burger RM
    J Neurosci; 2016 Aug; 36(32):8500-15. PubMed ID: 27511020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The multiple functions of T stellate/multipolar/chopper cells in the ventral cochlear nucleus.
    Oertel D; Wright S; Cao XJ; Ferragamo M; Bal R
    Hear Res; 2011 Jun; 276(1-2):61-9. PubMed ID: 21056098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model.
    Rothman JS; Young ED; Manis PB
    J Neurophysiol; 1993 Dec; 70(6):2562-83. PubMed ID: 8120599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The electrotonic structure of regular-spiking neurons in the ventral cochlear nucleus may determine their response properties.
    White JA; Young ED; Manis PB
    J Neurophysiol; 1994 May; 71(5):1774-86. PubMed ID: 8064348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology of physiologically characterised ventral cochlear nucleus stellate cells.
    Palmer AR; Wallace MN; Arnott RH; Shackleton TM
    Exp Brain Res; 2003 Dec; 153(4):418-26. PubMed ID: 12955380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating synchrony from the asynchronous: compensation for cochlear traveling wave delays by the dendrites of individual brainstem neurons.
    McGinley MJ; Liberman MC; Bal R; Oertel D
    J Neurosci; 2012 Jul; 32(27):9301-11. PubMed ID: 22764237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory nerve inputs to cochlear nucleus neurons studied with cross-correlation.
    Young ED; Sachs MB
    Neuroscience; 2008 Jun; 154(1):127-38. PubMed ID: 18343587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perfidious synaptic transmission in the guinea-pig auditory brainstem.
    Stasiak A; Sayles M; Winter IM
    PLoS One; 2018; 13(10):e0203712. PubMed ID: 30286113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Level dependence of cochlear nucleus onset unit responses and facilitation by second tones or broadband noise.
    Winter IM; Palmer AR
    J Neurophysiol; 1995 Jan; 73(1):141-59. PubMed ID: 7714560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.