These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 18848991)

  • 1. Mouse models of oxidative phosphorylation dysfunction and disease.
    Vempati UD; Torraco A; Moraes CT
    Methods; 2008 Dec; 46(4):241-7. PubMed ID: 18848991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mouse models of oxidative phosphorylation defects: powerful tools to study the pathobiology of mitochondrial diseases.
    Torraco A; Diaz F; Vempati UD; Moraes CT
    Biochim Biophys Acta; 2009 Jan; 1793(1):171-80. PubMed ID: 18601959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouse models of mitochondrial DNA defects and their relevance for human disease.
    Tyynismaa H; Suomalainen A
    EMBO Rep; 2009 Feb; 10(2):137-43. PubMed ID: 19148224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of the oxidative phosphorylation system in humans: what we have learned by studying its defects.
    Fernández-Vizarra E; Tiranti V; Zeviani M
    Biochim Biophys Acta; 2009 Jan; 1793(1):200-11. PubMed ID: 18620006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome analysis of complex I-deficient patients reveals distinct expression programs for subunits and assembly factors of the oxidative phosphorylation system.
    van der Lee R; Szklarczyk R; Smeitink J; Smeets HJ; Huynen MA; Vogel R
    BMC Genomics; 2015 Sep; 16():691. PubMed ID: 26369791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Animal models for mitochondrial disease.
    Wallace DC
    Methods Mol Biol; 2002; 197():3-54. PubMed ID: 12013805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-dose rapamycin extends lifespan in a mouse model of mtDNA depletion syndrome.
    Siegmund SE; Yang H; Sharma R; Javors M; Skinner O; Mootha V; Hirano M; Schon EA
    Hum Mol Genet; 2017 Dec; 26(23):4588-4605. PubMed ID: 28973153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Over-expression of Tfam improves the mitochondrial disease phenotypes in a mouse model system.
    Nishiyama S; Shitara H; Nakada K; Ono T; Sato A; Suzuki H; Ogawa T; Masaki H; Hayashi J; Yonekawa H
    Biochem Biophys Res Commun; 2010 Oct; 401(1):26-31. PubMed ID: 20816751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The striatum is highly susceptible to mitochondrial oxidative phosphorylation dysfunctions.
    Pickrell AM; Fukui H; Wang X; Pinto M; Moraes CT
    J Neurosci; 2011 Jul; 31(27):9895-904. PubMed ID: 21734281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolated deficiencies of OXPHOS complexes I and IV are identified accurately and quickly by simple enzyme activity immunocapture assays.
    Willis JH; Capaldi RA; Huigsloot M; Rodenburg RJ; Smeitink J; Marusich MF
    Biochim Biophys Acta; 2009 May; 1787(5):533-8. PubMed ID: 19041632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mouse models for mitochondrial disease.
    Wallace DC
    Am J Med Genet; 2001; 106(1):71-93. PubMed ID: 11579427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The GRACILE mutation introduced into Bcs1l causes postnatal complex III deficiency: a viable mouse model for mitochondrial hepatopathy.
    Levéen P; Kotarsky H; Mörgelin M; Karikoski R; Elmér E; Fellman V
    Hepatology; 2011 Feb; 53(2):437-47. PubMed ID: 21274865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial oxidative phosphorylation system assembly in man: recent achievements.
    Coenen MJ; van den Heuvel LP; Smeitink JA
    Curr Opin Neurol; 2001 Dec; 14(6):777-81. PubMed ID: 11723388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging-associated mitochondrial DNA mutations alter oxidative phosphorylation machinery and cause mitochondrial dysfunctions.
    Li H; Shen L; Hu P; Huang R; Cao Y; Deng J; Yuan W; Liu D; Yang J; Gu H; Bai Y
    Biochim Biophys Acta Mol Basis Dis; 2017 Sep; 1863(9):2266-2273. PubMed ID: 28559044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of apoptosis in cells expressing exogenous Hippi, a molecular partner of huntingtin-interacting protein Hip1.
    Majumder P; Chattopadhyay B; Mazumder A; Das P; Bhattacharyya NP
    Neurobiol Dis; 2006 May; 22(2):242-56. PubMed ID: 16364650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse models for nuclear DNA-encoded mitochondrial complex I deficiency.
    Koene S; Willems PH; Roestenberg P; Koopman WJ; Smeitink JA
    J Inherit Metab Dis; 2011 Apr; 34(2):293-307. PubMed ID: 20107904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined OXPHOS complex I and IV defect, due to mutated complex I assembly factor C20ORF7.
    Saada A; Edvardson S; Shaag A; Chung WK; Segel R; Miller C; Jalas C; Elpeleg O
    J Inherit Metab Dis; 2012 Jan; 35(1):125-31. PubMed ID: 21607760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A defect in the mitochondrial complex III, but not complex IV, triggers early ROS-dependent damage in defined brain regions.
    Diaz F; Garcia S; Padgett KR; Moraes CT
    Hum Mol Genet; 2012 Dec; 21(23):5066-77. PubMed ID: 22914734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome c Oxidase Activity Is a Metabolic Checkpoint that Regulates Cell Fate Decisions During T Cell Activation and Differentiation.
    Tarasenko TN; Pacheco SE; Koenig MK; Gomez-Rodriguez J; Kapnick SM; Diaz F; Zerfas PM; Barca E; Sudderth J; DeBerardinis RJ; Covian R; Balaban RS; DiMauro S; McGuire PJ
    Cell Metab; 2017 Jun; 25(6):1254-1268.e7. PubMed ID: 28591633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipopolysaccharide-induced mitochondrial DNA depletion.
    Choumar A; Tarhuni A; Lettéron P; Reyl-Desmars F; Dauhoo N; Damasse J; Vadrot N; Nahon P; Moreau R; Pessayre D; Mansouri A
    Antioxid Redox Signal; 2011 Dec; 15(11):2837-54. PubMed ID: 21767162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.