BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 18849387)

  • 21. Genetic manipulation of the IGF-I axis to regulate mammary gland development and function.
    Hadsell DL; Bonnette SG; Lee AV
    J Dairy Sci; 2002 Feb; 85(2):365-77. PubMed ID: 11913696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomic analysis of the mouse mammary gland is a powerful tool to identify novel proteins that are differentially expressed during mammary development.
    Davies CR; Morris JS; Griffiths MR; Page MJ; Pitt A; Stein T; Gusterson BA
    Proteomics; 2006 Nov; 6(21):5694-704. PubMed ID: 17022101
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Apoptosis in normal and neoplastic mammary gland development.
    Strange R; Metcalfe T; Thackray L; Dang M
    Microsc Res Tech; 2001 Jan; 52(2):171-81. PubMed ID: 11169865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ASAS centennial paper: Lactation biology for the twenty-first century.
    Loor JJ; Cohick WS
    J Anim Sci; 2009 Feb; 87(2):813-24. PubMed ID: 18820152
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular analysis of tammar (Macropus eugenii) mammary epithelial cells stimulated with lipopolysaccharide and lipoteichoic acid.
    Daly KA; Mailer SL; Digby MR; Lefévre C; Thomson P; Deane E; Nicholas KR; Williamson P
    Vet Immunol Immunopathol; 2009 May; 129(1-2):36-48. PubMed ID: 19157568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mammary epithelial-specific knockout of the ephrin-B2 gene leads to precocious epithelial cell death at lactation.
    Weiler S; Rohrbach V; Pulvirenti T; Adams R; Ziemiecki A; Andres AC
    Dev Growth Differ; 2009 Dec; 51(9):809-19. PubMed ID: 19843150
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel role for IRF-1 as a suppressor of apoptosis.
    Chapman RS; Duff EK; Lourenco PC; Tonner E; Flint DJ; Clarke AR; Watson CJ
    Oncogene; 2000 Dec; 19(54):6386-91. PubMed ID: 11175354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of Stat3 in apoptosis and mammary gland involution. Conditional deletion of Stat3.
    Chapman RS; Lourenco P; Tonner E; Flint D; Selbert S; Takeda K; Akira S; Clarke AR; Watson CJ
    Adv Exp Med Biol; 2000; 480():129-38. PubMed ID: 10959419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway.
    Sobolewska A; Gajewska M; Zarzyńska J; Gajkowska B; Motyl T
    Eur J Cell Biol; 2009 Feb; 88(2):117-30. PubMed ID: 19013662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Local over-expression of prolactin in differentiating mouse mammary gland induces functional defects and benign lesions, but no carcinoma.
    Manhès C; Kayser C; Bertheau P; Kelder B; Kopchick JJ; Kelly PA; Touraine P; Goffin V
    J Endocrinol; 2006 Aug; 190(2):271-85. PubMed ID: 16899561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lack of functional alpha-lactalbumin prevents involution in Cape fur seals and identifies the protein as an apoptotic milk factor in mammary gland involution.
    Sharp JA; Lefèvre C; Nicholas KR
    BMC Biol; 2008 Nov; 6():48. PubMed ID: 18986549
    [TBL] [Abstract][Full Text] [Related]  

  • 32. p53 mediates a default programme of mammary gland involution in the absence of STAT3.
    Matthews JR; Clarke AR
    Oncogene; 2005 Apr; 24(19):3083-90. PubMed ID: 15735683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interleukin-10 is up-regulated by prolactin and serum-starvation in cultured mammary epithelial cells.
    Kim TW; Moon HB; Kim SJ
    Mol Cells; 2003 Oct; 16(2):168-72. PubMed ID: 14651257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of genes differentially expressed in mouse mammary epithelium transformed by an activated beta-catenin.
    Renou JP; Bierie B; Miyoshi K; Cui Y; Djiane J; Reichenstein M; Shani M; Hennighausen L
    Oncogene; 2003 Jul; 22(29):4594-610. PubMed ID: 12881717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of IGFBP-5 in mammary gland development and involution.
    Allan GJ; Beattie J; Flint DJ
    Domest Anim Endocrinol; 2004 Oct; 27(3):257-66. PubMed ID: 15451073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in the cytologic distribution of heparin/heparan sulfate interacting protein/ribosomal protein L29 (HIP/RPL29) during in vivo and in vitro mouse mammary epithelial cell expression and differentiation.
    Kirn-Safran CB; Julian J; Fongemie JE; Hoke DE; Czymmek KJ; Carson DD
    Dev Dyn; 2002 Jan; 223(1):70-84. PubMed ID: 11803571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Developmental stage determines the effects of MYC in the mammary epithelium.
    Blakely CM; Sintasath L; D'Cruz CM; Hahn KT; Dugan KD; Belka GK; Chodosh LA
    Development; 2005 Mar; 132(5):1147-60. PubMed ID: 15689376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The genes induced by signal transducer and activators of transcription (STAT)3 and STAT5 in mammary epithelial cells define the roles of these STATs in mammary development.
    Clarkson RW; Boland MP; Kritikou EA; Lee JM; Freeman TC; Tiffen PG; Watson CJ
    Mol Endocrinol; 2006 Mar; 20(3):675-85. PubMed ID: 16293640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tif1γ is essential for the terminal differentiation of mammary alveolar epithelial cells and for lactation through SMAD4 inhibition.
    Hesling C; Lopez J; Fattet L; Gonzalo P; Treilleux I; Blanchard D; Losson R; Goffin V; Pigat N; Puisieux A; Mikaelian I; Gillet G; Rimokh R
    Development; 2013 Jan; 140(1):167-75. PubMed ID: 23154409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. D-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats.
    Davidson ME; Kerepesi LA; Soto A; Chan VT
    Arch Toxicol; 2009 Aug; 83(8):747-62. PubMed ID: 19212759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.