These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18849432)

  • 41. The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila and Coxiella burnetii.
    Zusman T; Aloni G; Halperin E; Kotzer H; Degtyar E; Feldman M; Segal G
    Mol Microbiol; 2007 Mar; 63(5):1508-23. PubMed ID: 17302824
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cell cycle-regulated degradation of tmRNA is controlled by RNase R and SmpB.
    Hong SJ; Tran QA; Keiler KC
    Mol Microbiol; 2005 Jul; 57(2):565-75. PubMed ID: 15978085
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antibiotics and UV radiation induce competence for natural transformation in Legionella pneumophila.
    Charpentier X; Kay E; Schneider D; Shuman HA
    J Bacteriol; 2011 Mar; 193(5):1114-21. PubMed ID: 21169481
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The response regulator CpxR directly regulates expression of several Legionella pneumophila icm/dot components as well as new translocated substrates.
    Altman E; Segal G
    J Bacteriol; 2008 Mar; 190(6):1985-96. PubMed ID: 18192394
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transfer-messenger RNA-SmpB protein regulates ribonuclease R turnover by promoting binding of HslUV and Lon proteases.
    Liang W; Deutscher MP
    J Biol Chem; 2012 Sep; 287(40):33472-9. PubMed ID: 22879590
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The importance of proteins of the RNase II/RNB-family in pathogenic bacteria.
    Matos RG; Bárria C; Moreira RN; Barahona S; Domingues S; Arraiano CM
    Front Cell Infect Microbiol; 2014; 4():68. PubMed ID: 24918089
    [No Abstract]   [Full Text] [Related]  

  • 47. Icm/dot-independent entry of Legionella pneumophila into amoeba and macrophage hosts.
    Bandyopadhyay P; Xiao H; Coleman HA; Price-Whelan A; Steinman HM
    Infect Immun; 2004 Aug; 72(8):4541-51. PubMed ID: 15271914
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Post-translational modification of RNase R is regulated by stress-dependent reduction in the acetylating enzyme Pka (YfiQ).
    Liang W; Deutscher MP
    RNA; 2012 Jan; 18(1):37-41. PubMed ID: 22124017
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The only exoribonuclease present in Haloferax volcanii has an unique response to temperature changes.
    Matos RG; López-Viñas E; Goméz-Puertas P; Arraiano CM
    Biochim Biophys Acta; 2012 Oct; 1820(10):1543-52. PubMed ID: 22705677
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterizing the Role of Exoribonucleases in the Control of Microbial Gene Expression: Differential RNA-Seq.
    Pobre V; Arraiano CM
    Methods Enzymol; 2018; 612():1-24. PubMed ID: 30502937
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel mechanism for ribonuclease regulation: transfer-messenger RNA (tmRNA) and its associated protein SmpB regulate the stability of RNase R.
    Liang W; Deutscher MP
    J Biol Chem; 2010 Sep; 285(38):29054-8. PubMed ID: 20688916
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Burning the Candle at Both Ends: Have Exoribonucleases Driven Divergence of Regulatory RNA Mechanisms in Bacteria?
    Mediati DG; Lalaouna D; Tree JJ
    mBio; 2021 Aug; 12(4):e0104121. PubMed ID: 34372700
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acetylation regulates the stability of a bacterial protein: growth stage-dependent modification of RNase R.
    Liang W; Malhotra A; Deutscher MP
    Mol Cell; 2011 Oct; 44(1):160-6. PubMed ID: 21981926
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiple roles of RNase Y in Streptococcus pyogenes mRNA processing and degradation.
    Chen Z; Itzek A; Malke H; Ferretti JJ; Kreth J
    J Bacteriol; 2013 Jun; 195(11):2585-94. PubMed ID: 23543715
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The torpedo effect in Bacillus subtilis: RNase J1 resolves stalled transcription complexes.
    Šiková M; Wiedermannová J; Převorovský M; Barvík I; Sudzinová P; Kofroňová O; Benada O; Šanderová H; Condon C; Krásný L
    EMBO J; 2020 Feb; 39(3):e102500. PubMed ID: 31840842
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The structure and enzymatic properties of a novel RNase II family enzyme from Deinococcus radiodurans.
    Schmier BJ; Seetharaman J; Deutscher MP; Hunt JF; Malhotra A
    J Mol Biol; 2012 Jan; 415(3):547-59. PubMed ID: 22133431
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The expression of the flagellum of Legionella pneumophila is modulated by different environmental factors.
    Heuner K; Brand BC; Hacker J
    FEMS Microbiol Lett; 1999 Jun; 175(1):69-77. PubMed ID: 10361710
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Insights into how RNase R degrades structured RNA: analysis of the nuclease domain.
    Vincent HA; Deutscher MP
    J Mol Biol; 2009 Apr; 387(3):570-83. PubMed ID: 19361424
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Escherichia coli cold-shock gene profiles in response to over-expression/deletion of CsdA, RNase R and PNPase and relevance to low-temperature RNA metabolism.
    Phadtare S
    Genes Cells; 2012 Oct; 17(10):850-74. PubMed ID: 22957931
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Widespread Protection of RNA Cleavage Sites by a Riboswitch Aptamer that Folds as a Compact Obstacle to Scanning by RNase E.
    Richards J; Belasco JG
    Mol Cell; 2021 Jan; 81(1):127-138.e4. PubMed ID: 33212019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.