These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18849432)

  • 61. RNase II regulates RNase PH and is essential for cell survival during starvation and stationary phase.
    Sulthana S; Quesada E; Deutscher MP
    RNA; 2017 Sep; 23(9):1456-1464. PubMed ID: 28625967
    [TBL] [Abstract][Full Text] [Related]  

  • 62. RNase II levels change according to the growth conditions: characterization of gmr, a new Escherichia coli gene involved in the modulation of RNase II.
    Cairrão F; Chora A; Zilhão R; Carpousis AJ; Arraiano CM
    Mol Microbiol; 2001 Mar; 39(6):1550-61. PubMed ID: 11260472
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The rnb gene of Synechocystis PCC6803 encodes a RNA hydrolase displaying RNase II and not RNase R enzymatic properties.
    Matos RG; Fialho AM; Giloh M; Schuster G; Arraiano CM
    PLoS One; 2012; 7(3):e32690. PubMed ID: 22403697
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Major 3'-5' Exoribonucleases in the Metabolism of Coding and Non-coding RNA.
    Dos Santos RF; Quendera AP; Boavida S; Seixas AF; Arraiano CM; Andrade JM
    Prog Mol Biol Transl Sci; 2018; 159():101-155. PubMed ID: 30340785
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Transcriptomic changes of Legionella pneumophila in water.
    Li L; Mendis N; Trigui H; Faucher SP
    BMC Genomics; 2015 Aug; 16(1):637. PubMed ID: 26306795
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Molecular basis for cytoplasmic RNA surveillance by uridylation-triggered decay in Drosophila.
    Reimão-Pinto MM; Manzenreither RA; Burkard TR; Sledz P; Jinek M; Mechtler K; Ameres SL
    EMBO J; 2016 Nov; 35(22):2417-2434. PubMed ID: 27729457
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Regulated RNA stability in the Gram positives.
    Condon C; Bechhofer DH
    Curr Opin Microbiol; 2011 Apr; 14(2):148-54. PubMed ID: 21334965
    [TBL] [Abstract][Full Text] [Related]  

  • 68. RNase R is associated in a functional complex with the RhpA DEAD-box RNA helicase in Helicobacter pylori.
    Tejada-Arranz A; Matos RG; Quentin Y; Bouilloux-Lafont M; Galtier E; Briolat V; Kornobis E; Douché T; Matondo M; Arraiano CM; Raynal B; De Reuse H
    Nucleic Acids Res; 2021 May; 49(9):5249-5264. PubMed ID: 33893809
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Solution structure and RNA-binding of a minimal ProQ-homolog from
    Immer C; Hacker C; Wöhnert J
    RNA; 2020 Dec; 26(12):2031-2043. PubMed ID: 32989045
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Growth-phase-dependent mobility of the lvh-encoding region in Legionella pneumophila strain Paris.
    Doléans-Jordheim A; Akermi M; Ginevra C; Cazalet C; Kay E; Schneider D; Buchrieser C; Atlan D; Vandenesch F; Etienne J; Jarraud S
    Microbiology (Reading); 2006 Dec; 152(Pt 12):3561-3568. PubMed ID: 17159208
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Bacillus subtilis YhaM, a member of a new family of 3'-to-5' exonucleases in gram-positive bacteria.
    Oussenko IA; Sanchez R; Bechhofer DH
    J Bacteriol; 2002 Nov; 184(22):6250-9. PubMed ID: 12399495
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Elevation of RNase R in response to multiple stress conditions.
    Chen C; Deutscher MP
    J Biol Chem; 2005 Oct; 280(41):34393-6. PubMed ID: 16135521
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Diverse conjugative elements silence natural transformation in
    Durieux I; Ginevra C; Attaiech L; Picq K; Juan PA; Jarraud S; Charpentier X
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18613-18618. PubMed ID: 31455740
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The single-domain response regulator LerC functions as a connector protein in the Legionella pneumophila effectors regulatory network.
    Feldheim YS; Zusman T; Kapach A; Segal G
    Mol Microbiol; 2018 Dec; 110(5):741-760. PubMed ID: 30105799
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Defining the impact of exoribonucleases in the shift between exponential and stationary phases.
    Pobre V; Barahona S; Dobrzanski T; Steffens MBR; Arraiano CM
    Sci Rep; 2019 Nov; 9(1):16271. PubMed ID: 31700028
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An RNA-seq based comparative approach reveals the transcriptome-wide interplay between 3'-to-5' exoRNases and RNase Y.
    Broglia L; Lécrivain AL; Renault TT; Hahnke K; Ahmed-Begrich R; Le Rhun A; Charpentier E
    Nat Commun; 2020 Mar; 11(1):1587. PubMed ID: 32221293
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Silently transformable: the many ways bacteria conceal their built-in capacity of genetic exchange.
    Attaiech L; Charpentier X
    Curr Genet; 2017 Jun; 63(3):451-455. PubMed ID: 27826682
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The special existences: nanoRNA and nanoRNase.
    Liao H; Liu M; Guo X
    Microbiol Res; 2018 Mar; 207():134-139. PubMed ID: 29458847
    [TBL] [Abstract][Full Text] [Related]  

  • 79. In Vitro Characterization of the Prokaryotic Counterparts of the Exosome Complex.
    Matos RG; Viegas SC; Arraiano CM
    Methods Mol Biol; 2020; 2062():47-61. PubMed ID: 31768971
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ribonuclease E strongly impacts bacterial adaptation to different growth conditions.
    Börner J; Friedrich T; Bartkuhn M; Klug G
    RNA Biol; 2023 Jan; 20(1):120-135. PubMed ID: 36988476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.