These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 18849456)
1. Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms. Marsili E; Rollefson JB; Baron DB; Hozalski RM; Bond DR Appl Environ Microbiol; 2008 Dec; 74(23):7329-37. PubMed ID: 18849456 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes. Srikanth S; Marsili E; Flickinger MC; Bond DR Biotechnol Bioeng; 2008 Apr; 99(5):1065-73. PubMed ID: 17929324 [TBL] [Abstract][Full Text] [Related]
3. NanoSIMS imaging reveals metabolic stratification within current-producing biofilms. Chadwick GL; Jiménez Otero F; Gralnick JA; Bond DR; Orphan VJ Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20716-20724. PubMed ID: 31548422 [TBL] [Abstract][Full Text] [Related]
4. Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community. Prokhorova A; Sturm-Richter K; Doetsch A; Gescher J Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28087529 [TBL] [Abstract][Full Text] [Related]
5. Mass transfer studies of Geobacter sulfurreducens biofilms on rotating disk electrodes. Babauta JT; Beyenal H Biotechnol Bioeng; 2014 Feb; 111(2):285-94. PubMed ID: 23996084 [TBL] [Abstract][Full Text] [Related]
6. On-Line Raman Spectroscopic Study of Cytochromes' Redox State of Biofilms in Microbial Fuel Cells. Krige A; Sjöblom M; Ramser K; Christakopoulos P; Rova U Molecules; 2019 Feb; 24(3):. PubMed ID: 30759821 [TBL] [Abstract][Full Text] [Related]
7. Dynamic potential-dependent electron transport pathway shifts in anode biofilms of Geobacter sulfurreducens. Yoho RA; Popat SC; Torres CI ChemSusChem; 2014 Dec; 7(12):3413-9. PubMed ID: 25351488 [TBL] [Abstract][Full Text] [Related]
8. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Reguera G; Nevin KP; Nicoll JS; Covalla SF; Woodard TL; Lovley DR Appl Environ Microbiol; 2006 Nov; 72(11):7345-8. PubMed ID: 16936064 [TBL] [Abstract][Full Text] [Related]
9. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Nevin KP; Richter H; Covalla SF; Johnson JP; Woodard TL; Orloff AL; Jia H; Zhang M; Lovley DR Environ Microbiol; 2008 Oct; 10(10):2505-14. PubMed ID: 18564184 [TBL] [Abstract][Full Text] [Related]
10. Crystallographic orientation and electrode nature are key factors for electric current generation by Geobacter sulfurreducens. Maestro B; Ortiz JM; Schrott G; Busalmen JP; Climent V; Feliu JM Bioelectrochemistry; 2014 Aug; 98():11-9. PubMed ID: 24642203 [TBL] [Abstract][Full Text] [Related]
11. A framework for modeling electroactive microbial biofilms performing direct electron transfer. Korth B; Rosa LF; Harnisch F; Picioreanu C Bioelectrochemistry; 2015 Dec; 106(Pt A):194-206. PubMed ID: 25921352 [TBL] [Abstract][Full Text] [Related]
12. Effect of electrode spacing on electron transfer and conductivity of Geobacter sulfurreducens biofilms. Liu P; Mohamed A; Liang P; Beyenal H Bioelectrochemistry; 2020 Feb; 131():107395. PubMed ID: 31704456 [TBL] [Abstract][Full Text] [Related]
13. Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms. Speers AM; Reguera G Appl Environ Microbiol; 2012 Jan; 78(2):437-44. PubMed ID: 22101036 [TBL] [Abstract][Full Text] [Related]
14. pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer. Babauta JT; Nguyen HD; Harrington TD; Renslow R; Beyenal H Biotechnol Bioeng; 2012 Oct; 109(10):2651-62. PubMed ID: 22549331 [TBL] [Abstract][Full Text] [Related]
15. Generation of high current densities by pure cultures of anode-respiring Geoalkalibacter spp. under alkaline and saline conditions in microbial electrochemical cells. Badalamenti JP; Krajmalnik-Brown R; Torres CI mBio; 2013 Apr; 4(3):e00144-13. PubMed ID: 23631915 [TBL] [Abstract][Full Text] [Related]
16. Evidence of a Streamlined Extracellular Electron Transfer Pathway from Biofilm Structure, Metabolic Stratification, and Long-Range Electron Transfer Parameters. Jiménez Otero F; Chadwick GL; Yates MD; Mickol RL; Saunders SH; Glaven SM; Gralnick JA; Newman DK; Tender LM; Orphan VJ; Bond DR Appl Environ Microbiol; 2021 Aug; 87(17):e0070621. PubMed ID: 34190605 [TBL] [Abstract][Full Text] [Related]
17. Geobacter sulfurreducens biofilms developed under different growth conditions on glassy carbon electrodes: insights using cyclic voltammetry. Katuri KP; Kavanagh P; Rengaraj S; Leech D Chem Commun (Camb); 2010 Jul; 46(26):4758-60. PubMed ID: 20485847 [TBL] [Abstract][Full Text] [Related]
18. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness. Jana PS; Katuri K; Kavanagh P; Kumar A; Leech D Phys Chem Chem Phys; 2014 May; 16(19):9039-46. PubMed ID: 24695860 [TBL] [Abstract][Full Text] [Related]
19. Study of the mechanism of catalytic activity of G. sulfurreducens biofilm anodes during biofilm growth. Strycharz-Glaven SM; Tender LM ChemSusChem; 2012 Jun; 5(6):1106-18. PubMed ID: 22581467 [TBL] [Abstract][Full Text] [Related]
20. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Zacharoff L; Chan CH; Bond DR Bioelectrochemistry; 2016 Feb; 107():7-13. PubMed ID: 26407054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]