BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18849623)

  • 1. Mechanism of Cd-induced inhibition of Na-glucose cotransporter in rabbit proximal tubule cells: roles of luminal pH and membrane-bound carbonic anhydrase.
    Tsuruoka S; Swenson ER; Fujimura A; Imai M
    Nephron Physiol; 2008; 110(2):p11-20. PubMed ID: 18849623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute effect of cadmium-metallothionein on glucose and amino acid transport across the apical membrane of the rabbit proximal tubule perfused in vitro.
    Tsuruoka S; Sugimoto K; Muto S; Nomiyama K; Fujimura A; Imai M
    J Pharmacol Exp Ther; 2000 Feb; 292(2):769-77. PubMed ID: 10640317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of carbonic anhydrase inhibitors on basolateral base transport of rabbit proximal straight tubule.
    Sasaki S; Marumo F
    Am J Physiol; 1989 Dec; 257(6 Pt 2):F947-52. PubMed ID: 2603961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of luminal pH and HCO3- on phosphate reabsorption in the rabbit proximal convoluted tubule.
    Hamm LL; Kokko JP; Jacobson HR
    Am J Physiol; 1984 Jul; 247(1 Pt 2):F25-34. PubMed ID: 6331202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal proximal tubular acidification. Role of brush-border and cytoplasmic carbonic anhydrase.
    Karlmark B; Agerup B; Wistrand PJ
    Acta Physiol Scand; 1979 Jun; 106(2):145-50. PubMed ID: 41407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of basolateral carbonic anhydrase in proximal tubular fluid and bicarbonate absorption.
    Tsuruoka S; Swenson ER; Petrovic S; Fujimura A; Schwartz GJ
    Am J Physiol Renal Physiol; 2001 Jan; 280(1):F146-54. PubMed ID: 11133524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetazolamide inhibition of basolateral base exit in rabbit renal proximal tubule S2 segment.
    Seki G; Frömter E
    Pflugers Arch; 1992 Oct; 422(1):60-5. PubMed ID: 1437526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbonic anhydrase-dependent bicarbonate reabsorption in the rat proximal tubule.
    Lucci MS; Warnock DG; Rector FC
    Am J Physiol; 1979 Jan; 236(1):F58-65. PubMed ID: 107811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous luminal disequilibrium pH in S3 proximal tubules. Role in ammonia and bicarbonate transport.
    Kurtz I; Star R; Balaban RS; Garvin JL; Knepper MA
    J Clin Invest; 1986 Oct; 78(4):989-96. PubMed ID: 3760195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HCO3- absorption in rabbit outer medullary collecting duct: role of luminal carbonic anhydrase.
    Tsuruoka S; Schwartz GJ
    Am J Physiol; 1998 Jan; 274(1):F139-47. PubMed ID: 9458833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial recovery of in vivo function by improved incubation conditions of isolated renal proximal tubule. II. Change of Na-HCO3 cotransport stoichiometry and of response to acetazolamide.
    Müller-Berger S; Nesterov VV; Frömter E
    Pflugers Arch; 1997 Aug; 434(4):383-91. PubMed ID: 9211803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of luminal or basolateral uptake and transepithelial transport of mercury in isolated perfused proximal tubules exposed to mercury-metallothionein.
    Zalups RK; Cherian MG; Barfuss DW
    J Toxicol Environ Health; 1995 Jan; 44(1):101-13. PubMed ID: 7823324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative effects of Cd2+ and Cd-metallothionein on cultured kidney tubule cells.
    Blumenthal S; Lewand D; Krezoski SK; Petering DH
    Toxicol Appl Pharmacol; 1996 Feb; 136(2):220-8. PubMed ID: 8619229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function of proximal tubule carbonic anhydrase defined by selective inhibition.
    Lucci MS; Tinker JP; Weiner IM; DuBose TD
    Am J Physiol; 1983 Oct; 245(4):F443-9. PubMed ID: 6414310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internephron heterogeneity for carbonic anhydrase-independent bicarbonate reabsorption in the rat.
    Frommer JP; Laski ME; Wesson DE; Kurtzman NA
    J Clin Invest; 1984 Apr; 73(4):1034-45. PubMed ID: 6423664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrepancy between the nephrotoxic potencies of cadmium-metallothionein and cadmium chloride and the renal concentration of cadmium in the proximal convoluted tubules.
    Dorian C; Gattone VH; Klaassen CD
    Toxicol Appl Pharmacol; 1995 Jan; 130(1):161-8. PubMed ID: 7839364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Luminal pH in the amphibian distal tubule: effects of carbonic anhydrase and carbonic anhydrase inhibitors.
    Planelles G; Discala F; Anagnostopoulos T
    Am J Physiol; 1992 Dec; 263(6 Pt 2):R1254-9. PubMed ID: 1481935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium transport and toxicity in isolated perfused segments of the renal proximal tubule.
    Robinson MK; Barfuss DW; Zalups RK
    Toxicol Appl Pharmacol; 1993 Jul; 121(1):103-11. PubMed ID: 8337694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible role of carbonic anhydrase in rat pancreatic islets: enzymatic, secretory, metabolic, ionic, and electrical aspects.
    Sener A; Jijakli H; Zahedi Asl S; Courtois P; Yates AP; Meuris S; Best LC; Malaisse WJ
    Am J Physiol Endocrinol Metab; 2007 Jun; 292(6):E1624-30. PubMed ID: 17284575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of carbonic anhydrase by parathyroid hormone and cyclic AMP in rat renal cortex in vitro.
    Beck N; Kim KS; Wolak M; Davis BB
    J Clin Invest; 1975 Jan; 55(1):149-56. PubMed ID: 233968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.