BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 18850126)

  • 21. Mechanisms of arrythmogenic cardiac alternans.
    Wilson LD; Rosenbaum DS
    Europace; 2007 Nov; 9 Suppl 6():vi77-82. PubMed ID: 17959697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of transmembrane chloride current in afterdepolarisations in canine ventricular cardiomyocytes.
    Fülöp L; Fiák E; Szentandrássy N; Magyar J; Nánási PP; Bányász T
    Gen Physiol Biophys; 2003 Sep; 22(3):341-53. PubMed ID: 14986885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Slow [Na]i Changes and Positive Feedback Between Membrane Potential and [Ca]i Underlie Intermittent Early Afterdepolarizations and Arrhythmias.
    Xie Y; Liao Z; Grandi E; Shiferaw Y; Bers DM
    Circ Arrhythm Electrophysiol; 2015 Dec; 8(6):1472-80. PubMed ID: 26407967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Model of rate-dependent property in myocardial tissues as a useful algorithm for the PC-based arrhythmia generator.
    Ikeda N; Miyahara H; Takeuchi A; Tsurut A; Shiratak M
    Medinfo; 1995; 8 Pt 1():729-32. PubMed ID: 8591312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arrhythmogenesis by single ectopic beats originating in the Purkinje system.
    Deo M; Boyle PM; Kim AM; Vigmond EJ
    Am J Physiol Heart Circ Physiol; 2010 Oct; 299(4):H1002-11. PubMed ID: 20622103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of intrinsic and induced vulnerability in electrically induced cardiac arrhythmias.
    Starmer CF
    J Cardiovasc Electrophysiol; 2006 Dec; 17(12):1369-70. PubMed ID: 17034405
    [No Abstract]   [Full Text] [Related]  

  • 27. Shock-induced arrhythmogenesis in the human heart: A computational modelling study.
    Bernabeu MO; Wallman M; Rodriguez B
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():760-3. PubMed ID: 21095904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Confirmation of novel noninvasive high-density electrocardiographic mapping with electrophysiology study: implications for therapy.
    Cakulev I; Sahadevan J; Arruda M; Goldstein RN; Hong M; Intini A; Mackall JA; Stambler BS; Ramanathan C; Jia P; Strom M; Waldo AL
    Circ Arrhythm Electrophysiol; 2013 Feb; 6(1):68-75. PubMed ID: 23275263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Repolarisation and vulnerability to re-entry in the human heart with short QT syndrome arising from KCNQ1 mutation--a simulation study.
    Zhang H; Kharche S; Holden AV; Hancox JC
    Prog Biophys Mol Biol; 2008; 96(1-3):112-31. PubMed ID: 17905416
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational cardiac electrophysiology is ready for prime time.
    Severi S; Rodriguez B; Zaza A
    Europace; 2014 Mar; 16(3):382-3. PubMed ID: 24569892
    [No Abstract]   [Full Text] [Related]  

  • 31. Negative filament tension in the Luo-Rudy model of cardiac tissue.
    Alonso S; Panfilov AV
    Chaos; 2007 Mar; 17(1):015102. PubMed ID: 17411259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Basic mechanisms of cardiac impulse propagation and associated arrhythmias.
    Kléber AG; Rudy Y
    Physiol Rev; 2004 Apr; 84(2):431-88. PubMed ID: 15044680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The pinwheel experiment revisited.
    Roth BJ
    J Theor Biol; 1998 Feb; 190(4):389-93. PubMed ID: 9533873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on re-entrant arrhythmias and ectopic beats in excitable tissues by bifurcation analyses.
    Chay TR; Lee YS
    J Theor Biol; 1992 Mar; 155(2):137-71. PubMed ID: 1333552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. T-wave alternans phase following ventricular extrasystoles predicts arrhythmia-free survival.
    Narayan SM; Smith JM; Schechtman KB; Lindsay BD; Cain ME
    Heart Rhythm; 2005 Mar; 2(3):234-41. PubMed ID: 15851310
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Study of cellular electrophysiology based on Noble98 dynamic model of ventricular action potential].
    Zhang H; Yang L; Jin Y; Zhang Z; Huang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):6-10. PubMed ID: 16532798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Filament behavior in a computational model of ventricular fibrillation in the canine heart.
    Clayton RH; Holden AV
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):28-34. PubMed ID: 14723491
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of diffuse fibrosis on wave propagation in human ventricular tissue.
    Ten Tusscher KH; Panfilov AV
    Europace; 2007 Nov; 9 Suppl 6():vi38-45. PubMed ID: 17959692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The physiological basis of ectopic ventricular rhythm: a unifying concept.
    Schamroth L
    S Afr Med J; 1971 Dec; 45(49):Suppl:3-26. PubMed ID: 4110822
    [No Abstract]   [Full Text] [Related]  

  • 40. Dauricine suppressed CsCl-induced early afterdepolarizations and triggered arrhythmias in rabbit heart in vivo.
    Xia JS; Tu H; Li Z; Zeng FD
    Zhongguo Yao Li Xue Bao; 1999 Jun; 20(6):513-6. PubMed ID: 10678143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.