BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18850271)

  • 1. Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model.
    Zhang Z; Kleinstreuer C; Kim CS
    Ann Biomed Eng; 2008 Dec; 36(12):2095-110. PubMed ID: 18850271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An adjustable triple-bifurcation unit model for air-particle flow simulations in human tracheobronchial airways.
    Kleinstreuer C; Zhang Z
    J Biomech Eng; 2009 Feb; 131(2):021007. PubMed ID: 19102566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways.
    Xi J; Longest PW
    Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways.
    Xi J; Longest PW; Martonen TB
    J Appl Physiol (1985); 2008 Jun; 104(6):1761-77. PubMed ID: 18388247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cartilage rings on airflow and particle deposition in the trachea and main bronchi.
    Russo J; Robinson R; Oldham MJ
    Med Eng Phys; 2008 Jun; 30(5):581-9. PubMed ID: 17719260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation.
    Rahimi-Gorji M; Gorji TB; Gorji-Bandpy M
    Comput Biol Med; 2016 Jul; 74():1-17. PubMed ID: 27160637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results.
    Elcner J; Lizal F; Jedelsky J; Jicha M; Chovancova M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):447-69. PubMed ID: 26163996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of oral airway geometry characteristics on the diffusional deposition of inhaled nanoparticles.
    Xi J; Longest PW
    J Biomech Eng; 2008 Feb; 130(1):011008. PubMed ID: 18298184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow and particle deposition patterns in a realistic human double bifurcation airway model.
    Choi LT; Tu JY; Li HF; Thien F
    Inhal Toxicol; 2007 Feb; 19(2):117-31. PubMed ID: 17169859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence.
    Worth Longest P; Vinchurkar S
    J Biomech; 2007; 40(2):305-16. PubMed ID: 16533511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational analysis of micron-particle deposition in a human triple bifurcation airway model.
    Zhang Z; Kleinstreuer C; Kim CS
    Comput Methods Biomech Biomed Engin; 2002 Apr; 5(2):135-47. PubMed ID: 12186723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerosol transport and deposition in a triple bifurcation bronchial airway model with local tumors.
    Zhang Z; Kleinstreuer C; Kim CS; Hickey AJ
    Inhal Toxicol; 2002 Nov; 14(11):1111-33. PubMed ID: 12454794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional model of tracheobronchial particle distribution during mucociliary clearance in the human respiratory tract.
    Sturm R
    Z Med Phys; 2013 May; 23(2):111-9. PubMed ID: 23477913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of particle deposition in asymmetrical tracheobronchial model geometry.
    Farkas A; Balásházy I
    Comput Biol Med; 2008 Apr; 38(4):508-18. PubMed ID: 18336809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unsteady-state airflow and particle deposition in a three-generation human lung geometry.
    Nazridoust K; Asgharian B
    Inhal Toxicol; 2008 Apr; 20(6):595-610. PubMed ID: 18444012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deposition of naphthalene and tetradecane vapors in models of the human respiratory system.
    Zhang Z; Kleinstreuer C
    Inhal Toxicol; 2011 Jan; 23(1):44-57. PubMed ID: 21222561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of micron- and nanoparticle deposition patterns in a realistic human nasal cavity.
    Wang SM; Inthavong K; Wen J; Tu JY; Xue CL
    Respir Physiol Neurobiol; 2009 May; 166(3):142-51. PubMed ID: 19442930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient, physiologically realistic lung airflow simulations.
    Walters DK; Burgreen GW; Lavallee DM; Thompson DS; Hester RL
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):3016-9. PubMed ID: 21768041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow patterns and deposition fraction of particles in the range of 0.1-10μm at trachea and the first third generations under different breathing conditions.
    Saber EM; Heydari G
    Comput Biol Med; 2012 May; 42(5):631-8. PubMed ID: 22445097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micron particle deposition in a tracheobronchial airway model under different breathing conditions.
    Inthavong K; Choi LT; Tu J; Ding S; Thien F
    Med Eng Phys; 2010 Dec; 32(10):1198-212. PubMed ID: 20855226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.