These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

709 related articles for article (PubMed ID: 18850324)

  • 1. MD simulation of concentrated polymer solutions: structural relaxation near the glass transition.
    Peter S; Meyer H; Baschnagel J
    Eur Phys J E Soft Matter; 2009 Feb; 28(2):147-58. PubMed ID: 18850324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relaxation dynamics of a viscous silica melt: the intermediate scattering functions.
    Horbach J; Kob W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041503. PubMed ID: 11690029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-motion and the alpha relaxation in a simulated glass-forming polymer: crossover from Gaussian to non-Gaussian dynamic behavior.
    Colmenero J; Alvarez F; Arbe A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041804. PubMed ID: 12005863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated glass-forming polymer melts: dynamic scattering functions, chain length effects, and mode-coupling theory analysis.
    Frey S; Weysser F; Meyer H; Farago J; Fuchs M; Baschnagel J
    Eur Phys J E Soft Matter; 2015 Feb; 38(2):97. PubMed ID: 25715952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of concentrated polymer solutions in thin film geometry. I. Equilibrium properties near the glass transition.
    Peter S; Meyer H; Baschnagel J
    J Chem Phys; 2009 Jul; 131(1):014902. PubMed ID: 19586119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probe molecules in polymer melts near the glass transition: A molecular dynamics study of chain length effects.
    Vallée RA; Paul W; Binder K
    J Chem Phys; 2010 Jan; 132(3):034901. PubMed ID: 20095750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical phase diagrams for colloids and non-adsorbing polymer.
    Fleer GJ; Tuinier R
    Adv Colloid Interface Sci; 2008 Nov; 143(1-2):1-47. PubMed ID: 18783771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breakdown of time-temperature superposition in a bead-spring polymer melt near the glass transition temperature.
    Yamazaki T
    J Phys Chem B; 2014 Dec; 118(50):14687-94. PubMed ID: 25485844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of concentrated polymer solutions in thin film geometry. II. Solvent evaporation near the glass transition.
    Peter S; Meyer H; Baschnagel J
    J Chem Phys; 2009 Jul; 131(1):014903. PubMed ID: 19586120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous-time random-walk approach to supercooled liquids: Self-part of the van Hove function and related quantities.
    Helfferich J; Brisch J; Meyer H; Benzerara O; Ziebert F; Farago J; Baschnagel J
    Eur Phys J E Soft Matter; 2018 Jun; 41(6):71. PubMed ID: 29876655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic glass transition in two dimensions.
    Bayer M; Brader JM; Ebert F; Fuchs M; Lange E; Maret G; Schilling R; Sperl M; Wittmer JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011508. PubMed ID: 17677451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts.
    Schweizer KS; Saltzman EJ
    J Chem Phys; 2004 Jul; 121(4):1984-2000. PubMed ID: 15260751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In search of temporal power laws in the orientational relaxation near isotropic-nematic phase transition in model nematogens.
    Jose PP; Bagchi B
    J Chem Phys; 2004 Jun; 120(23):11256-66. PubMed ID: 15268154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Static and dynamic properties of supercooled thin polymer films.
    Varnik F; Baschnagel J; Binder K
    Eur Phys J E Soft Matter; 2002 May; 8(2):175-92. PubMed ID: 15010967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic spatially heterogeneous dynamics on the alpha and beta relaxation time scales studied via a four-point correlation function.
    Flenner E; Szamel G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051502. PubMed ID: 19518457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Static and dynamic properties of model elastomer with various cross-linking densities: a molecular dynamics study.
    Liu J; Cao D; Zhang L
    J Chem Phys; 2009 Jul; 131(3):034903. PubMed ID: 19624229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles.
    Banchio AJ; Heinen M; Holmqvist P; Nägele G
    J Chem Phys; 2018 Apr; 148(13):134902. PubMed ID: 29626910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Dense diffusion" in colloidal glasses: short-ranged long-time self-diffusion as a mechanistic model for relaxation dynamics.
    Wang JG; Li Q; Peng X; McKenna GB; Zia RN
    Soft Matter; 2020 Aug; 16(31):7370-7389. PubMed ID: 32696798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependent micro-rheology of a glass-forming polymer melt studied by molecular dynamics simulation.
    Kuhnhold A; Paul W
    J Chem Phys; 2014 Sep; 141(12):124907. PubMed ID: 25273474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially correlated dynamics in a simulated glass-forming polymer melt: analysis of clustering phenomena.
    Gebremichael Y; Schrøder TB; Starr FW; Glotzer SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051503. PubMed ID: 11735925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.