BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 18850331)

  • 1. Comparative genomic analysis of teleost fish bmal genes.
    Wang H
    Genetica; 2009 May; 136(1):149-61. PubMed ID: 18850331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of teleost fish genomes reveals preservation of different ancient clock duplicates in different fishes.
    Wang H
    Mar Genomics; 2008 Jun; 1(2):69-78. PubMed ID: 21798156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of period genes in teleost fish genomes.
    Wang H
    J Mol Evol; 2008 Jul; 67(1):29-40. PubMed ID: 18535754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics of duplicate γ-glutamyl transferase genes in teleosts: medaka (Oryzias latipes), stickleback (Gasterosteus aculeatus), green spotted pufferfish (Tetraodon nigroviridis), fugu (Takifugu rubripes), and zebrafish (Danio rerio).
    Law SH; Redelings BD; Kullman SW
    J Exp Zool B Mol Dev Evol; 2012 Jan; 318(1):35-49. PubMed ID: 21898790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of pigment synthesis pathways by gene and genome duplication in fish.
    Braasch I; Schartl M; Volff JN
    BMC Evol Biol; 2007 May; 7():74. PubMed ID: 17498288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomics provides evidence for an ancient genome duplication event in fish.
    Taylor JS; Van de Peer Y; Braasch I; Meyer A
    Philos Trans R Soc Lond B Biol Sci; 2001 Oct; 356(1414):1661-79. PubMed ID: 11604130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Molecular Evolution of Circadian Clock Genes in Spotted Gar (
    Sun Y; Liu C; Huang M; Huang J; Liu C; Zhang J; Postlethwait JH; Wang H
    Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31426485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes.
    Parmar MB; Wright JM
    Genome; 2013 Nov; 56(11):691-701. PubMed ID: 24299108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish.
    Hoegg S; Brinkmann H; Taylor JS; Meyer A
    J Mol Evol; 2004 Aug; 59(2):190-203. PubMed ID: 15486693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetraodon genome analysis provides further evidence for whole-genome duplication in the ray-finned fish lineage.
    Christoffels A; Brenner S; Venkatesh B
    Comp Biochem Physiol Part D Genomics Proteomics; 2006 Mar; 1(1):13-9. PubMed ID: 20483230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene loss and evolutionary rates following whole-genome duplication in teleost fishes.
    Brunet FG; Roest Crollius H; Paris M; Aury JM; Gibert P; Jaillon O; Laudet V; Robinson-Rechavi M
    Mol Biol Evol; 2006 Sep; 23(9):1808-16. PubMed ID: 16809621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication.
    Sato Y; Hashiguchi Y; Nishida M
    BMC Evol Biol; 2009 Jun; 9():127. PubMed ID: 19500364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning of mouse BMAL2 and its daily expression profile in the suprachiasmatic nucleus: a remarkable acceleration of Bmal2 sequence divergence after Bmal gene duplication.
    Okano T; Sasaki M; Fukada Y
    Neurosci Lett; 2001 Mar; 300(2):111-4. PubMed ID: 11207387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The circadian clock of teleost fish: a comparative analysis reveals distinct fates for duplicated genes.
    Toloza-Villalobos J; Arroyo JI; Opazo JC
    J Mol Evol; 2015 Jan; 80(1):57-64. PubMed ID: 25487517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty acid-binding protein (fabp) genes of spotted green pufferfish (Tetraodon nigroviridis): comparative genomics and spatial transcriptional regulation.
    Thirumaran A; Wright JM
    Genome; 2014 May; 57(5):289-301. PubMed ID: 25153522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex Genes Are Preferentially Retained After Whole-Genome Duplication in Teleost Fish.
    Guo B
    J Mol Evol; 2017 Jun; 84(5-6):253-258. PubMed ID: 28492966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consequences of hoxb1 duplication in teleost fish.
    Hurley IA; Scemama JL; Prince VE
    Evol Dev; 2007; 9(6):540-54. PubMed ID: 17976051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the neuropeptide Y family: new genes by chromosome duplications in early vertebrates and in teleost fishes.
    Sundström G; Larsson TA; Brenner S; Venkatesh B; Larhammar D
    Gen Comp Endocrinol; 2008 Feb; 155(3):705-16. PubMed ID: 17950734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric evolution in two fish-specifically duplicated receptor tyrosine kinase paralogons involved in teleost coloration.
    Braasch I; Salzburger W; Meyer A
    Mol Biol Evol; 2006 Jun; 23(6):1192-202. PubMed ID: 16547150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Duplication of phospholipase C-delta gene family in fish genomes.
    Kim MS; Seo JS; Ahn SJ; Kim NY; Je JE; Sung JH; Lee HH; Chung JK
    Genomics; 2008 Nov; 92(5):366-71. PubMed ID: 18722520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.