BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 18850643)

  • 1. Ion separation in nanofluidics.
    Xuan X
    Electrophoresis; 2008 Sep; 29(18):3737-43. PubMed ID: 18850643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charged species transport, separation, and dispersion in nanoscale channels: autogenous electric field-flow fractionation.
    Griffiths SK; Nilson RH
    Anal Chem; 2006 Dec; 78(23):8134-41. PubMed ID: 17134150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of charged species separation by autogenous electric field-flow fractionation in nano-scale channels.
    Griffiths SK; Nilson RH
    Electrophoresis; 2010 Mar; 31(5):832-42. PubMed ID: 20191545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrokinetic transport in nanochannels. 1. Theory.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic dispersion in nanofluidics.
    De Leebeeck A; Sinton D
    Electrophoresis; 2006 Dec; 27(24):4999-5008. PubMed ID: 17117385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of ions in nanofluidic channels with combined pressure-driven and electro-osmotic flow.
    Gillespie D; Pennathur S
    Anal Chem; 2013 Mar; 85(5):2991-8. PubMed ID: 23368674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic conductance of nanopores in microscale analysis systems: where microfluidics meets nanofluidics.
    Höltzel A; Tallarek U
    J Sep Sci; 2007 Jul; 30(10):1398-419. PubMed ID: 17623420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroosmotic flow and particle transport in micro/nano nozzles and diffusers.
    Chen L; Conlisk AT
    Biomed Microdevices; 2008 Apr; 10(2):289-98. PubMed ID: 18034305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solute separation in nanofluidic channels: pressure-driven or electric field-driven?
    Xuan X; Li D
    Electrophoresis; 2007 Feb; 28(4):627-34. PubMed ID: 17304496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a measurement technique for ion distribution in an extended nanochannel by super-resolution-laser-induced fluorescence.
    Kazoe Y; Mawatari K; Sugii Y; Kitamori T
    Anal Chem; 2011 Nov; 83(21):8152-7. PubMed ID: 21942883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrokinetic transport in nanochannels. 2. Experiments.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6782-9. PubMed ID: 16255574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic ion transport in confined micro-nanochannel.
    Wang J; Liu C; Xu Z
    Electrophoresis; 2016 Mar; 37(5-6):769-74. PubMed ID: 26995194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophoretic size separation of particles in a periodically constricted microchannel.
    Cheng KL; Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2008 Mar; 128(10):101101. PubMed ID: 18345869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic microchip with dual-opposite injection for simultaneous measurements of anions and cations.
    Wang J; Chen G; Muck A; Collins GE
    Electrophoresis; 2003 Nov; 24(21):3728-34. PubMed ID: 14613198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrokinetics in nanochannels: part I. Electric double layer overlap and channel-to-well equilibrium.
    Baldessari F; Santiago JG
    J Colloid Interface Sci; 2008 Sep; 325(2):526-38. PubMed ID: 18639883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined electroosmotically and pressure driven flow in soft nanofluidics.
    Matin MH; Ohshima H
    J Colloid Interface Sci; 2015 Dec; 460():361-9. PubMed ID: 26385594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic separation of charged macromolecules in nanochannels within the continuum regime: effects of wall interactions and hydrodynamic confinements.
    Das S; Chakraborty S
    Electrophoresis; 2008 Mar; 29(5):1115-24. PubMed ID: 18232026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Debye-Hückel approximation: its use in describing electroosmotic flow in micro- and nanochannels.
    Conlisk AT
    Electrophoresis; 2005 May; 26(10):1896-912. PubMed ID: 15832301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-solution oligonucleotide separation in nanoscale channels.
    Pennathur S; Baldessari F; Santiago JG; Kattah MG; Steinman JB; Utz PJ
    Anal Chem; 2007 Nov; 79(21):8316-22. PubMed ID: 17883279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanofluidic diodes.
    Cheng LJ; Guo LJ
    Chem Soc Rev; 2010 Mar; 39(3):923-38. PubMed ID: 20179815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.