BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 18850721)

  • 1. Formation of an unfolding intermediate state of soluble chloride intracellular channel protein CLIC1 at acidic pH.
    Fanucchi S; Adamson RJ; Dirr HW
    Biochemistry; 2008 Nov; 47(44):11674-81. PubMed ID: 18850721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane extension and oligomerization of the CLIC1 chloride intracellular channel protein upon membrane interaction.
    Goodchild SC; Angstmann CN; Breit SN; Curmi PM; Brown LJ
    Biochemistry; 2011 Dec; 50(50):10887-97. PubMed ID: 22082111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of arginine 29 and glutamic acid 81 interactions in the conformational stability of human chloride intracellular channel 1.
    Legg-E'silva D; Achilonu I; Fanucchi S; Stoychev S; Fernandes M; Dirr HW
    Biochemistry; 2012 Oct; 51(40):7854-62. PubMed ID: 22966869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of individual histidines in the pH-dependent global stability of human chloride intracellular channel 1.
    Achilonu I; Fanucchi S; Cross M; Fernandes M; Dirr HW
    Biochemistry; 2012 Feb; 51(5):995-1004. PubMed ID: 22242893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane mimetics induce helix formation and oligomerization of the chloride intracellular channel protein 1 transmembrane domain.
    Peter B; Ngubane NC; Fanucchi S; Dirr HW
    Biochemistry; 2013 Apr; 52(16):2739-49. PubMed ID: 23547926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metamorphic response of the CLIC1 chloride intracellular ion channel protein upon membrane interaction.
    Goodchild SC; Howell MW; Littler DR; Mandyam RA; Sale KL; Mazzanti M; Breit SN; Curmi PM; Brown LJ
    Biochemistry; 2010 Jun; 49(25):5278-89. PubMed ID: 20507120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The enigma of the CLIC proteins: Ion channels, redox proteins, enzymes, scaffolding proteins?
    Littler DR; Harrop SJ; Goodchild SC; Phang JM; Mynott AV; Jiang L; Valenzuela SM; Mazzanti M; Brown LJ; Breit SN; Curmi PM
    FEBS Lett; 2010 May; 584(10):2093-101. PubMed ID: 20085760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural dynamics of soluble chloride intracellular channel protein CLIC1 examined by amide hydrogen-deuterium exchange mass spectrometry.
    Stoychev SH; Nathaniel C; Fanucchi S; Brock M; Li S; Asmus K; Woods VL; Dirr HW
    Biochemistry; 2009 Sep; 48(35):8413-21. PubMed ID: 19650640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From glutathione transferase to pore in a CLIC.
    Cromer BA; Morton CJ; Board PG; Parker MW
    Eur Biophys J; 2002 Sep; 31(5):356-64. PubMed ID: 12202911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the Janus protein human CLIC2.
    Cromer BA; Gorman MA; Hansen G; Adams JJ; Coggan M; Littler DR; Brown LJ; Mazzanti M; Breit SN; Curmi PM; Dulhunty AF; Board PG; Parker MW
    J Mol Biol; 2007 Nov; 374(3):719-31. PubMed ID: 17945253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational plasticity of cryptolepain: accumulation of partially unfolded states in denaturants induced equilibrium unfolding.
    Pande M; Dubey VK; Sahu V; Jagannadham MV
    J Biotechnol; 2007 Sep; 131(4):404-17. PubMed ID: 17825936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different sensitivities to acid denaturation within a family of proteins: implications for acid unfolding and membrane translocation.
    Evans LJ; Goble ML; Hales KA; Lakey JH
    Biochemistry; 1996 Oct; 35(40):13180-5. PubMed ID: 8855956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the soluble form of the redox-regulated chloride ion channel protein CLIC4.
    Littler DR; Assaad NN; Harrop SJ; Brown LJ; Pankhurst GJ; Luciani P; Aguilar MI; Mazzanti M; Berryman MA; Breit SN; Curmi PM
    FEBS J; 2005 Oct; 272(19):4996-5007. PubMed ID: 16176272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trimeric structure of the wild soluble chloride intracellular ion channel CLIC4 observed in crystals.
    Li Y; Li D; Zeng Z; Wang D
    Biochem Biophys Res Commun; 2006 May; 343(4):1272-8. PubMed ID: 16581025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CLIC4 (p64H1) and its putative transmembrane domain form poorly selective, redox-regulated ion channels.
    Singh H; Ashley RH
    Mol Membr Biol; 2007; 24(1):41-52. PubMed ID: 17453412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate 85 and glutamate 228 contribute to the pH-response of the soluble form of chloride intracellular channel 1.
    Cross M; Fernandes M; Dirr H; Fanucchi S
    Mol Cell Biochem; 2015 Jan; 398(1-2):83-93. PubMed ID: 25209805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-dependent stability of the human alpha-lactalbumin molten globule state: contrasting roles of the 6 - 120 disulfide and the beta-subdomain at low and neutral pH.
    Horng JC; Demarest SJ; Raleigh DP
    Proteins; 2003 Aug; 52(2):193-202. PubMed ID: 12833543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 'molten-globule' membrane-insertion intermediate of the pore-forming domain of colicin A.
    van der Goot FG; González-Mañas JM; Lakey JH; Pattus F
    Nature; 1991 Dec; 354(6352):408-10. PubMed ID: 1956406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping functional domains of chloride intracellular channel (CLIC) proteins in vivo.
    Berry KL; Hobert O
    J Mol Biol; 2006 Jun; 359(5):1316-33. PubMed ID: 16737711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of pH-driven conformational transitions of proteins: insights from continuum electrostatics calculations of acid unfolding.
    Fitch CA; Whitten ST; Hilser VJ; García-Moreno E B
    Proteins; 2006 Apr; 63(1):113-26. PubMed ID: 16400648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.