BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 18850724)

  • 1. Analysis of coiled-coil interactions between core proteins of the spindle pole body.
    Zizlsperger N; Malashkevich VN; Pillay S; Keating AE
    Biochemistry; 2008 Nov; 47(45):11858-68. PubMed ID: 18850724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific coiled-coil interactions contribute to a global model of the structure of the spindle pole body.
    Zizlsperger N; Keating AE
    J Struct Biol; 2010 May; 170(2):246-56. PubMed ID: 20139001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spc110p: assembly properties and role in the connection of nuclear microtubules to the yeast spindle pole body.
    Kilmartin JV; Goh PY
    EMBO J; 1996 Sep; 15(17):4592-602. PubMed ID: 8887551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of alpha-helical coiled-coil dimer formation by spin-labeled synthetic peptides: a model parallel coiled-coil peptide and the antiparallel coiled coil formed by a replica of the ProP C-terminus.
    Hillar A; Tripet B; Zoetewey D; Wood JM; Hodges RS; Boggs JM
    Biochemistry; 2003 Dec; 42(51):15170-8. PubMed ID: 14690427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Bbp1p-Mps2p complex connects the SPB to the nuclear envelope and is essential for SPB duplication.
    Schramm C; Elliott S; Shevchenko A; Schiebel E
    EMBO J; 2000 Feb; 19(3):421-33. PubMed ID: 10654940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsecond melting of a folding intermediate in a coiled-coil peptide, monitored by T-jump/UV Raman spectroscopy.
    Balakrishnan G; Hu Y; Case MA; Spiro TG
    J Phys Chem B; 2006 Oct; 110(40):19877-83. PubMed ID: 17020373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological interference with protein-protein interactions mediated by coiled-coil motifs.
    Strauss HM; Keller S
    Handb Exp Pharmacol; 2008; (186):461-82. PubMed ID: 18491064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The XMAP215 homologue Stu2 at yeast spindle pole bodies regulates microtubule dynamics and anchorage.
    Usui T; Maekawa H; Pereira G; Schiebel E
    EMBO J; 2003 Sep; 22(18):4779-93. PubMed ID: 12970190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core residue replacements cause coiled-coil orientation switching in vitro and in vivo: structure-function correlations for osmosensory transporter ProP.
    Tsatskis Y; Kwok SC; Becker E; Gill C; Smith MN; Keates RA; Hodges RS; Wood JM
    Biochemistry; 2008 Jan; 47(1):60-72. PubMed ID: 18076193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of Spc42 coiled-coils in yeast centrosome assembly and duplication.
    Drennan AC; Krishna S; Seeger MA; Andreas MP; Gardner JM; Sether EKR; Jaspersen SL; Rayment I
    Mol Biol Cell; 2019 Jun; 30(12):1505-1522. PubMed ID: 30969903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computationally guided protein-interaction screen uncovers coiled-coil interactions involved in vesicular trafficking.
    Zhang H; Chen J; Wang Y; Peng L; Dong X; Lu Y; Keating AE; Jiang T
    J Mol Biol; 2009 Sep; 392(1):228-41. PubMed ID: 19591838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogenesis of the secretory granule: chromogranin A coiled-coil structure results in unusual physical properties and suggests a mechanism for granule core condensation.
    Mosley CA; Taupenot L; Biswas N; Taulane JP; Olson NH; Vaingankar SM; Wen G; Schork NJ; Ziegler MG; Mahata SK; O'Connor DT
    Biochemistry; 2007 Sep; 46(38):10999-1012. PubMed ID: 17718510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The organization of the core proteins of the yeast spindle pole body.
    Muller EG; Snydsman BE; Novik I; Hailey DW; Gestaut DR; Niemann CA; O'Toole ET; Giddings TH; Sundin BA; Davis TN
    Mol Biol Cell; 2005 Jul; 16(7):3341-52. PubMed ID: 15872084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A ternary membrane protein complex anchors the spindle pole body in the nuclear envelope in budding yeast.
    Kupke T; Malsam J; Schiebel E
    J Biol Chem; 2017 May; 292(20):8447-8458. PubMed ID: 28356353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a pH-responsive artificial membrane fusion system by using designed coiled-coil polypeptides.
    Kashiwada A; Matsuda K; Mizuno T; Tanaka T
    Chemistry; 2008; 14(24):7343-50. PubMed ID: 18626873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting metastable coiled-coil domains by computational design.
    Barth P; Schoeffler A; Alber T
    J Am Chem Soc; 2008 Sep; 130(36):12038-44. PubMed ID: 18698842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Key phosphorylation events in Spc29 and Spc42 guide multiple steps of yeast centrosome duplication.
    Jones MH; O'Toole ET; Fabritius AS; Muller EG; Meehl JB; Jaspersen SL; Winey M
    Mol Biol Cell; 2018 Sep; 29(19):2280-2291. PubMed ID: 30044722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-sensitivity of the E3/K3 heterodimeric coiled coil.
    Apostolovic B; Klok HA
    Biomacromolecules; 2008 Nov; 9(11):3173-80. PubMed ID: 18937405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macromolecule-induced assembly of coiled-coils in alternating multiblock polymers.
    Sahin E; Kiick KL
    Biomacromolecules; 2009 Oct; 10(10):2740-9. PubMed ID: 19743840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the structural stability of the Tup1-interaction domain of Ssn6: evidence for a conformational change on the complex.
    Palaiomylitou M; Tartas A; Vlachakis D; Tzamarias D; Vlassi M
    Proteins; 2008 Jan; 70(1):72-82. PubMed ID: 17634984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.