These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18850779)

  • 1. Complex dynamics of human red blood cell flickering: alterations with in vivo aging.
    Costa M; Ghiran I; Peng CK; Nicholson-Weller A; Goldberger AL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):020901. PubMed ID: 18850779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detrended fluctuation analysis of membrane flickering in discocyte and spherocyte red blood cells using quantitative phase microscopy.
    Lee S; Lee JY; Park CS; Kim DY
    J Biomed Opt; 2011 Jul; 16(7):076009. PubMed ID: 21806270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale modeling of red blood cell mechanics and blood flow in malaria.
    Fedosov DA; Lei H; Caswell B; Suresh S; Karniadakis GE
    PLoS Comput Biol; 2011 Dec; 7(12):e1002270. PubMed ID: 22144878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human red blood cell aging: correlative changes in surface charge and cell properties.
    Huang YX; Wu ZJ; Mehrishi J; Huang BT; Chen XY; Zheng XJ; Liu WJ; Luo M
    J Cell Mol Med; 2011 Dec; 15(12):2634-42. PubMed ID: 21435169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human erythrocyte flickering: temperature, ATP concentration, water transport, and cell aging, plus a computer simulation.
    Szekely D; Yau TW; Kuchel PW
    Eur Biophys J; 2009 Sep; 38(7):923-39. PubMed ID: 19484468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially-resolved eigenmode decomposition of red blood cells membrane fluctuations questions the role of ATP in flickering.
    Boss D; Hoffmann A; Rappaz B; Depeursinge C; Magistretti PJ; Van de Ville D; Marquet P
    PLoS One; 2012; 7(8):e40667. PubMed ID: 22899990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red blood cell dynamics: from cell deformation to ATP release.
    Wan J; Forsyth AM; Stone HA
    Integr Biol (Camb); 2011 Oct; 3(10):972-81. PubMed ID: 21935538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systemic lupus erythematosus serum deposits C4d on red blood cells, decreases red blood cell membrane deformability, and promotes nitric oxide production.
    Ghiran IC; Zeidel ML; Shevkoplyas SS; Burns JM; Tsokos GC; Kyttaris VC
    Arthritis Rheum; 2011 Feb; 63(2):503-12. PubMed ID: 21280005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical and geometrical properties of density-separated neonatal and adult erythrocytes.
    Linderkamp O; Friederichs E; Meiselman HJ
    Pediatr Res; 1993 Nov; 34(5):688-93. PubMed ID: 8284111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age.
    Waugh RE; Narla M; Jackson CW; Mueller TJ; Suzuki T; Dale GL
    Blood; 1992 Mar; 79(5):1351-8. PubMed ID: 1536958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.
    Fedosov DA; Caswell B; Karniadakis GE
    Biophys J; 2010 May; 98(10):2215-25. PubMed ID: 20483330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature transitions of protein properties in human red blood cells.
    Artmann GM; Kelemen C; Porst D; Büldt G; Chien S
    Biophys J; 1998 Dec; 75(6):3179-83. PubMed ID: 9826638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging red blood cell dynamics by quantitative phase microscopy.
    Popescu G; Park Y; Choi W; Dasari RR; Feld MS; Badizadegan K
    Blood Cells Mol Dis; 2008; 41(1):10-6. PubMed ID: 18387320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous red blood cell adhesion and deformability in sickle cell disease.
    Alapan Y; Little JA; Gurkan UA
    Sci Rep; 2014 Nov; 4():7173. PubMed ID: 25417696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic analysis of red blood cell deformability.
    Guo Q; Duffy SP; Matthews K; Santoso AT; Scott MD; Ma H
    J Biomech; 2014 Jun; 47(8):1767-76. PubMed ID: 24767871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH on red blood cell deformability.
    Kuzman D; Znidarcic T; Gros M; Vrhovec S; Svetina S; Zeks B
    Pflugers Arch; 2000; 440(5 Suppl):R193-4. PubMed ID: 11005668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A methodology to study the deformability of red blood cells flowing in microcapillaries in vitro.
    Tomaiuolo G; Preziosi V; Simeone M; Guido S; Ciancia R; Martinelli V; Rinaldi C; Rotoli B
    Ann Ist Super Sanita; 2007; 43(2):186-92. PubMed ID: 17634668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.
    Dyrda A; Cytlak U; Ciuraszkiewicz A; Lipinska A; Cueff A; Bouyer G; Egée S; Bennekou P; Lew VL; Thomas SL
    PLoS One; 2010 Feb; 5(2):e9447. PubMed ID: 20195477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Microfiltrometer (MicroFM): a new filtration device for the assessment of less deformable erythrocyte subpopulations.
    Amoussou-Guenou KM; Martinsen OG; Squitiero B; Rusch P; Healy JC
    Scand J Clin Lab Invest; 2004 Apr; 64(2):108-12. PubMed ID: 15115247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.