These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 18850804)
1. Finite-size scaling analysis and dynamic study of the critical behavior of a model for the collective displacement of self-driven individuals. Baglietto G; Albano EV Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021125. PubMed ID: 18850804 [TBL] [Abstract][Full Text] [Related]
2. Nature of the order-disorder transition in the Vicsek model for the collective motion of self-propelled particles. Baglietto G; Albano EV Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):050103. PubMed ID: 20364937 [TBL] [Abstract][Full Text] [Related]
3. Numerical evidence of hyperscaling violation in wetting transitions of the random-bond Ising model in d=2 dimensions. Albano EV; Luque L; Trobo ML; Binder K Phys Rev E; 2017 Feb; 95(2-1):022801. PubMed ID: 28297842 [TBL] [Abstract][Full Text] [Related]
4. Critical behavior of the Widom-Rowlinson mixture: coexistence diameter and order parameter. Vink RL J Chem Phys; 2006 Mar; 124(9):94502. PubMed ID: 16526862 [TBL] [Abstract][Full Text] [Related]
5. Finite-size analysis of a two-dimensional Ising model within a nonextensive approach. Crokidakis N; Soares-Pinto DO; Reis MS; Souza AM; Sarthour RS; Oliveira IS Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051101. PubMed ID: 20364941 [TBL] [Abstract][Full Text] [Related]
6. Finite-size scaling in the system of coupled oscillators with heterogeneity in coupling strength. Hong H Phys Rev E; 2017 Jul; 96(1-1):012213. PubMed ID: 29347132 [TBL] [Abstract][Full Text] [Related]
7. Impact of site dilution and agent diffusion on the critical behavior of the majority-vote model. Crokidakis N; de Oliveira PM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041147. PubMed ID: 22680457 [TBL] [Abstract][Full Text] [Related]
8. Collective dynamics of pedestrians in a corridor: An approach combining social force and Vicsek models. Moreno JC; Rubio Puzzo ML; Paul W Phys Rev E; 2020 Aug; 102(2-1):022307. PubMed ID: 32942496 [TBL] [Abstract][Full Text] [Related]
9. Universality classes of the absorbing state transition in a system with interacting static and diffusive populations. Argolo C; Quintino Y; Siqueira Y; Gleria I; Lyra ML Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061127. PubMed ID: 20365138 [TBL] [Abstract][Full Text] [Related]
10. Interplay of critical Casimir and dispersion forces. Dantchev D; Schlesener F; Dietrich S Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011121. PubMed ID: 17677424 [TBL] [Abstract][Full Text] [Related]
11. Monte Carlo study of the phase transition in the critical behavior of the Ising model with shear. Saracco GP; Gonnella G Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051126. PubMed ID: 20364966 [TBL] [Abstract][Full Text] [Related]
12. Dynamic behavior of the interface of striplike structures in driven lattice gases. Saracco GP; Albano EV Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031132. PubMed ID: 18851018 [TBL] [Abstract][Full Text] [Related]
13. Finite-size scaling analysis on the phase transition of a ferromagnetic polymer chain model. Luo MB J Chem Phys; 2006 Jan; 124(3):034903. PubMed ID: 16438610 [TBL] [Abstract][Full Text] [Related]
14. Stationary and dynamic critical behavior of the contact process on the Sierpinski carpet. Argolo C; Barros P; Tomé T; Gleria I; Lyra ML Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052137. PubMed ID: 26066149 [TBL] [Abstract][Full Text] [Related]
15. Mean-field behavior as a result of noisy local dynamics in self-organized criticality: neuroscience implications. Moosavi SA; Montakhab A Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052139. PubMed ID: 25353771 [TBL] [Abstract][Full Text] [Related]
16. Intrinsic and extrinsic noise effects on phase transitions of network models with applications to swarming systems. Pimentel JA; Aldana M; Huepe C; Larralde H Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061138. PubMed ID: 18643248 [TBL] [Abstract][Full Text] [Related]
17. Nonperturbative renormalization group for the stationary Kardar-Parisi-Zhang equation: scaling functions and amplitude ratios in 1+1, 2+1, and 3+1 dimensions. Kloss T; Canet L; Wschebor N Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051124. PubMed ID: 23214755 [TBL] [Abstract][Full Text] [Related]
18. Multiscaling in an YX model of networks. Holme P; Wu ZX; Minnhagen P Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036120. PubMed ID: 19905193 [TBL] [Abstract][Full Text] [Related]
19. Noise-driven dynamic phase transition in a one-dimensional Ising-like model. Sen P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):032103. PubMed ID: 20365795 [TBL] [Abstract][Full Text] [Related]
20. Density-independent model of self-propelled particles. Schubring D; Ohmann PR Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032108. PubMed ID: 24125215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]