These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 18850932)

  • 1. Refined similarity hypotheses in shell models of homogeneous turbulence and turbulent convection.
    Ching ES; Guo H; Lo TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026303. PubMed ID: 18850932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous scaling and refined similarity of an active scalar in a shell model of homogeneous turbulent convection.
    Ching ES; Cheng WC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):015303. PubMed ID: 18351906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultimate-state scaling in a shell model for homogeneous turbulent convection.
    Ching ES; Ko TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036309. PubMed ID: 18851145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kraichnan's random sweeping hypothesis in homogeneous turbulent convection.
    He X; Tong P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):037302. PubMed ID: 21517631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous scaling of velocity and temperature structure functions.
    Antonia RA; Smalley RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):025301. PubMed ID: 11308531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double scaling and intermittency in shear dominated flows.
    Casciola CM; Benzi R; Gualtieri P; Jacob B; Piva R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):015301. PubMed ID: 11800727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuations of a passive scalar in a turbulent mixing layer.
    Attili A; Bisetti F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033013. PubMed ID: 24125350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cascade time scales for energy and helicity in homogeneous isotropic turbulence.
    Kurien S; Taylor MA; Matsumoto T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066313. PubMed ID: 15244732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive scalar spectrum in high-Schmidt-number stationary and nonstationary turbulence.
    Hunana P; Zank GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):017301. PubMed ID: 18351966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh-Bénard convection.
    Kunnen RP; Clercx HJ; Geurts BJ; van Bokhoven LJ; Akkermans RA; Verzicco R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016302. PubMed ID: 18351929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-equilibrium turbulence scalings and self-similarity in turbulent planar jets.
    Cafiero G; Vassilicos JC
    Proc Math Phys Eng Sci; 2019 May; 475(2225):20190038. PubMed ID: 31236057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling of the two-point velocity difference along scalar gradient trajectories in fluid turbulence.
    Wang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046325. PubMed ID: 19518351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refined similarity hypothesis using three-dimensional local averages.
    Iyer KP; Sreenivasan KR; Yeung PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063024. PubMed ID: 26764821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Space-time correlations of fluctuating velocities in turbulent shear flows.
    Zhao X; He GW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046316. PubMed ID: 19518342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small-scale universality in fluid turbulence.
    Schumacher J; Scheel JD; Krasnov D; Donzis DA; Yakhot V; Sreenivasan KR
    Proc Natl Acad Sci U S A; 2014 Jul; 111(30):10961-5. PubMed ID: 25024175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reynolds number scaling of velocity increments in isotropic turbulence.
    Iyer KP; Sreenivasan KR; Yeung PK
    Phys Rev E; 2017 Feb; 95(2-1):021101. PubMed ID: 28297886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling hypothesis leading to extended self-similarity in turbulence.
    Fujisaka H; Grossmann S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026305. PubMed ID: 11308575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cascades of velocity and temperature fluctuations in buoyancy-driven thermal turbulence.
    Sun C; Zhou Q; Xia KQ
    Phys Rev Lett; 2006 Oct; 97(14):144504. PubMed ID: 17155258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forward and Inverse Energy Cascade in Fluid Turbulence Adhere to Kolmogorov's Refined Similarity Hypothesis.
    Yao H; Yeung PK; Zaki TA; Meneveau C
    Phys Rev Lett; 2024 Apr; 132(16):164001. PubMed ID: 38701479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inertial clustering of particles in high-Reynolds-number turbulence.
    Saw EW; Shaw RA; Ayyalasomayajula S; Chuang PY; Gylfason A
    Phys Rev Lett; 2008 May; 100(21):214501. PubMed ID: 18518606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.