These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 18850937)

  • 1. Spatial Markov processes for modeling Lagrangian particle dynamics in heterogeneous porous media.
    Le Borgne T; Dentz M; Carrera J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026308. PubMed ID: 18850937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lagrangian statistical model for transport in highly heterogeneous velocity fields.
    Le Borgne T; Dentz M; Carrera J
    Phys Rev Lett; 2008 Aug; 101(9):090601. PubMed ID: 18851594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial Markov model of anomalous transport through random lattice networks.
    Kang PK; Dentz M; Le Borgne T; Juanes R
    Phys Rev Lett; 2011 Oct; 107(18):180602. PubMed ID: 22107618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow intermittency, dispersion, and correlated continuous time random walks in porous media.
    de Anna P; Le Borgne T; Dentz M; Tartakovsky AM; Bolster D; Davy P
    Phys Rev Lett; 2013 May; 110(18):184502. PubMed ID: 23683202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.
    Holzner M; Morales VL; Willmann M; Dentz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013015. PubMed ID: 26274277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling coupled nanoparticle aggregation and transport in porous media: a Lagrangian approach.
    Taghavy A; Pennell KD; Abriola LM
    J Contam Hydrol; 2015 Jan; 172():48-60. PubMed ID: 25437227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous transport in correlated velocity fields.
    Berkowitz B; Scher H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011128. PubMed ID: 20365344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies.
    Deng H; Dai Z; Wolfsberg AV; Ye M; Stauffer PH; Lu Z; Kwicklis E
    Chemosphere; 2013 Apr; 91(3):248-57. PubMed ID: 23260249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media.
    Sun H; Zhang Y; Chen W; Reeves DM
    J Contam Hydrol; 2014 Feb; 157():47-58. PubMed ID: 24299661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating Lagrangian Subgrid-Scale Dispersion on Neutral Surfaces in the Ocean.
    Reijnders D; Deleersnijder E; van Sebille E
    J Adv Model Earth Syst; 2022 Feb; 14(2):e2021MS002850. PubMed ID: 35860619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Formulation of Lagrangian Stochastic Models for Heavy-Particle Trajectories.
    Reynolds AM
    J Colloid Interface Sci; 2000 Dec; 232(2):260-268. PubMed ID: 11097759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous-time multidimensional Markovian description of Lévy walks.
    Lubashevsky I; Friedrich R; Heuer A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031148. PubMed ID: 19905103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore-scale statistics of flow and transport through porous media.
    Aramideh S; Vlachos PP; Ardekani AM
    Phys Rev E; 2018 Jul; 98(1-1):013104. PubMed ID: 30110739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical studies of the transport behavior of a passive solute in a two-dimensional incompressible random flow field.
    Dentz M; Kinzelbach H; Attinger S; Kinzelbach W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046306. PubMed ID: 12786486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing the limits of the spatial Markov model for upscaling transport: The role of nonmonotonic effective velocity autocorrelations.
    Sund NL; Bolster D; Benson DA
    Phys Rev E; 2016 Oct; 94(4-1):043107. PubMed ID: 27841538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolution dependency of sinking Lagrangian particles in ocean general circulation models.
    Nooteboom PD; Delandmeter P; van Sebille E; Bijl PK; Dijkstra HA; von der Heydt AS
    PLoS One; 2020; 15(9):e0238650. PubMed ID: 32911487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical modeling of the transport and dissolution of citrate-stabilized silver nanoparticles in porous media.
    Taghavy A; Mittelman A; Wang Y; Pennell KD; Abriola LM
    Environ Sci Technol; 2013 Aug; 47(15):8499-507. PubMed ID: 23819811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting transient particle transport in enclosed environments with the combined computational fluid dynamics and Markov chain method.
    Chen C; Lin CH; Long Z; Chen Q
    Indoor Air; 2014 Feb; 24(1):81-92. PubMed ID: 23789964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review and numerical assessment of the random walk particle tracking method.
    Salamon P; Fernàndez-Garcia D; Gómez-Hernández JJ
    J Contam Hydrol; 2006 Oct; 87(3-4):277-305. PubMed ID: 16839642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of the velocity acceleration factor for colloidal transport in porous media using NMR.
    Creber SA; Pintelon TR; Johns ML
    J Colloid Interface Sci; 2009 Nov; 339(1):168-74. PubMed ID: 19660763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.