These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18850978)

  • 41. High-speed dynamic atomic force microscopy by using a Q-controlled cantilever eigenmode as an actuator.
    Balantekin M
    Ultramicroscopy; 2015 Feb; 149():45-50. PubMed ID: 25436928
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative study of the gold-enhanced fluorescence of CdSe/ZnS nanocrystals as a function of distance using an AFM probe.
    Lee SY; Nakaya K; Hayashi T; Hara M
    Phys Chem Chem Phys; 2009 Jun; 11(21):4403-9. PubMed ID: 19458845
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Viscosity effects on hydrodynamic drainage force measurements involving deformable bodies.
    Dagastine RR; Webber GB; Manica R; Stevens GW; Grieser F; Chan DY
    Langmuir; 2010 Jul; 26(14):11921-7. PubMed ID: 20578751
    [TBL] [Abstract][Full Text] [Related]  

  • 45. No-slip hydrodynamic boundary condition for hydrophilic particles.
    Honig CD; Ducker WA
    Phys Rev Lett; 2007 Jan; 98(2):028305. PubMed ID: 17358657
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular dynamics study of the effect of atomic roughness on the slip length at the fluid-solid boundary during shear flow.
    Galea TM; Attard P
    Langmuir; 2004 Apr; 20(8):3477-82. PubMed ID: 15875885
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Oscillatory forces of nanoparticle suspensions confined between rough surfaces modified with polyelectrolytes via the layer-by-layer technique.
    Zeng Y; von Klitzing R
    Langmuir; 2012 Apr; 28(15):6313-21. PubMed ID: 22420681
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic mechanisms for apparent slip on hydrophobic surfaces.
    Lauga E; Brenner MP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026311. PubMed ID: 15447592
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tunable-slip boundaries for coarse-grained simulations of fluid flow.
    Smiatek J; Allen MP; Schmid F
    Eur Phys J E Soft Matter; 2008; 26(1-2):115-22. PubMed ID: 18425408
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microscopic and macroscopic aspects of stick-slip motion in granular shear.
    Cain RG; Page NW; Biggs S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016413. PubMed ID: 11461416
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts.
    Cottin-Bizonne C; Cross B; Steinberger A; Charlaix E
    Phys Rev Lett; 2005 Feb; 94(5):056102. PubMed ID: 15783663
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface heterogeneity of polystyrene latex particles determined by dynamic force microscopy.
    Tan S; Sherman RL; Qin D; Ford WT
    Langmuir; 2005 Jan; 21(1):43-9. PubMed ID: 15620283
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular dynamics simulation study of friction force and torque on a rough spherical particle.
    Kohale SC; Khare R
    J Chem Phys; 2010 Jun; 132(23):234706. PubMed ID: 20572733
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measurement of contact-line dissipation in a nanometer-thin soap film.
    Guo S; Lee CH; Sheng P; Tong P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012404. PubMed ID: 25679625
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of bacterial adhesion using a gradient force analysis method and colloid probe atomic force microscopy.
    Li X; Logan BE
    Langmuir; 2004 Sep; 20(20):8817-22. PubMed ID: 15379512
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Probing surfaces with single-polymer atomic force microscope experiments.
    Friedsam C; Gaub HE; Netz RR
    Biointerphases; 2006 Mar; 1(1):MR1. PubMed ID: 20408606
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dipole-dependent slip of Newtonian liquids at smooth solid hydrophobic surfaces.
    Cho JH; Law BM; Rieutord F
    Phys Rev Lett; 2004 Apr; 92(16):166102. PubMed ID: 15169244
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantification of the lateral detachment force for bacterial cells using atomic force microscope and centrifugation.
    Zhang T; Chao Y; Shih K; Li XY; Fang HH
    Ultramicroscopy; 2011 Jan; 111(2):131-9. PubMed ID: 21185457
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanobubbles and their role in slip and drag.
    Maali A; Bhushan B
    J Phys Condens Matter; 2013 May; 25(18):184003. PubMed ID: 23598711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.