These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 18850986)

  • 21. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer.
    Peng J; Alben S
    Bioinspir Biomim; 2012 Mar; 7(1):016012. PubMed ID: 22345408
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scallop Theorem and Swimming at the Mesoscale.
    Hubert M; Trosman O; Collard Y; Sukhov A; Harting J; Vandewalle N; Smith AS
    Phys Rev Lett; 2021 Jun; 126(22):224501. PubMed ID: 34152187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scattering of low-Reynolds-number swimmers.
    Alexander GP; Pooley CM; Yeomans JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):045302. PubMed ID: 18999482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Random walk of a swimmer in a low-Reynolds-number medium.
    Garcia M; Berti S; Peyla P; Rafaï S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):035301. PubMed ID: 21517551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clustering-induced self-propulsion of isotropic autophoretic particles.
    Varma A; Montenegro-Johnson TD; Michelin S
    Soft Matter; 2018 Sep; 14(35):7155-7173. PubMed ID: 30058650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generalized Onsager relations for electrokinetic effects in anisotropic and heterogeneous geometries.
    Brunet E; Ajdari A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016306. PubMed ID: 14995711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Origin of polar order in dense suspensions of phototactic micro-swimmers.
    Furlan S; Comparini D; Ciszak M; Beccai L; Mancuso S; Mazzolai B
    PLoS One; 2012; 7(6):e38895. PubMed ID: 22723904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lagrangian coherent structures in low Reynolds number swimming.
    Wilson MM; Peng J; Dabiri JO; Eldredge JD
    J Phys Condens Matter; 2009 May; 21(20):204105. PubMed ID: 21825514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Utilizing passive elements to break time reversibility at low Reynolds number: a swimmer with one activated element.
    Sheikhshoaei A; Rajabi M
    Eur Phys J E Soft Matter; 2023 Mar; 46(3):15. PubMed ID: 36929245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study.
    Setter E; Bucher I; Haber S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066304. PubMed ID: 23005203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical response of a small swimmer driven by conformational transitions.
    Golestanian R; Ajdari A
    Phys Rev Lett; 2008 Jan; 100(3):038101. PubMed ID: 18233039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrodynamics of linked sphere model swimmers.
    Alexander GP; Pooley CM; Yeomans JM
    J Phys Condens Matter; 2009 May; 21(20):204108. PubMed ID: 21825517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Passive swimming in low-Reynolds-number flows.
    Olla P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):015302. PubMed ID: 20866679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Locomotion by tangential deformation in a polymeric fluid.
    Zhu L; Do-Quang M; Lauga E; Brandt L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011901. PubMed ID: 21405707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maximizing propulsive thrust of a driven filament at low Reynolds number via variable flexibility.
    Peng Z; Elfring GJ; Pak OS
    Soft Matter; 2017 Mar; 13(12):2339-2347. PubMed ID: 28267159
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling microscopic swimmers at low Reynolds number.
    Earl DJ; Pooley CM; Ryder JF; Bredberg I; Yeomans JM
    J Chem Phys; 2007 Feb; 126(6):064703. PubMed ID: 17313234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-propulsion of symmetric chemically active particles: Point-source model and experiments on camphor disks.
    Boniface D; Cottin-Bizonne C; Kervil R; Ybert C; Detcheverry F
    Phys Rev E; 2019 Jun; 99(6-1):062605. PubMed ID: 31330666
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Size dependent efficiency of photophoretic swimmers.
    Bregulla AP; Cichos F
    Faraday Discuss; 2015; 184():381-91. PubMed ID: 26402861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical pressure, surface excess, and polar order of a dilute rod-like nanoswimmer suspension: role of swimmer-wall interactions.
    Wang Z; Chen YF; Chen HY; Sheng YJ; Tsao HK
    Soft Matter; 2018 Apr; 14(15):2906-2914. PubMed ID: 29589848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of time reversal symmetric and asymmetric nano-swimmers oriented with an electric field in soft matter.
    Rajonson G; Poulet D; Bruneau M; Teboul V
    J Chem Phys; 2020 Jan; 152(2):024503. PubMed ID: 31941324
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.