BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 18851071)

  • 1. Structural study of coacervation in protein-polyelectrolyte complexes.
    Chodankar S; Aswal VK; Kohlbrecher J; Vavrin R; Wagh AG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031913. PubMed ID: 18851071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of polyelectrolyte structure on protein-polyelectrolyte coacervates: coacervates of bovine serum albumin with poly(diallyldimethylammonium chloride) versus chitosan.
    Kayitmazer AB; Strand SP; Tribet C; Jaeger W; Dubin PL
    Biomacromolecules; 2007 Nov; 8(11):3568-77. PubMed ID: 17892297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entering and exiting the protein-polyelectrolyte coacervate phase via nonmonotonic salt dependence of critical conditions.
    Antonov M; Mazzawi M; Dubin PL
    Biomacromolecules; 2010 Jan; 11(1):51-9. PubMed ID: 19947624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein purification by polyelectrolyte coacervation: influence of protein charge anisotropy on selectivity.
    Xu Y; Mazzawi M; Chen K; Sun L; Dubin PL
    Biomacromolecules; 2011 May; 12(5):1512-22. PubMed ID: 21413681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heteroprotein complex coacervation: bovine β-lactoglobulin and lactoferrin.
    Yan Y; Kizilay E; Seeman D; Flanagan S; Dubin PL; Bovetto L; Donato L; Schmitt C
    Langmuir; 2013 Dec; 29(50):15614-23. PubMed ID: 24164315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyelectrolyte-protein complexes: structure and conformation of each specie revealed by SANS.
    Cousin F; Gummel J; Ung D; Boué F
    Langmuir; 2005 Oct; 21(21):9675-88. PubMed ID: 16207052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Composition and structure of whey protein/gum arabic coacervates.
    Weinbreck F; Tromp RH; de Kruif CG
    Biomacromolecules; 2004; 5(4):1437-45. PubMed ID: 15244462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Control Factors on Protein-Polyelectrolyte Complex Coacervation.
    Zhou J; Wan Y; Cohen Stuart MA; Wang M; Wang J
    Biomacromolecules; 2023 Dec; 24(12):5759-5768. PubMed ID: 37955264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dilution induced coacervation in polyelectrolyte-micelle and polyelectrolyte-protein systems.
    Xu AY; Kizilay E; Madro SP; Vadenais JZ; McDonald KW; Dubin PL
    Soft Matter; 2018 Mar; 14(12):2391-2399. PubMed ID: 29503995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-gelatin complex coacervation, UCST and first-order phase transition of coacervate to anisotropic ion gel in 1-methyl-3-octylimidazolium chloride ionic liquid solutions.
    Rawat K; Aswal VK; Bohidar HB
    J Phys Chem B; 2012 Dec; 116(51):14805-16. PubMed ID: 23194173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein encapsulation via polyelectrolyte complex coacervation: Protection against protein denaturation.
    Zhao M; Zacharia NS
    J Chem Phys; 2018 Oct; 149(16):163326. PubMed ID: 30384671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex coacervation of supercharged proteins with polyelectrolytes.
    Obermeyer AC; Mills CE; Dong XH; Flores RJ; Olsen BD
    Soft Matter; 2016 Apr; 12(15):3570-81. PubMed ID: 26965053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light scattering study of complex formation between protein and polyelectrolyte at various ionic strengths.
    Matsunami H; Kikuchi R; Ogawa K; Kokufuta E
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):142-8. PubMed ID: 17112711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein separation by sequential selective complex coacervation.
    Zhou J; Cai Y; Wan Y; Wu B; Liu J; Zhang X; Hu W; Cohen Stuart MA; Wang J
    J Colloid Interface Sci; 2023 Nov; 650(Pt B):2065-2074. PubMed ID: 37355354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical thermodynamics of liquid-liquid phase separation in ternary systems during complex coacervation.
    Pawar N; Bohidar HB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036107. PubMed ID: 21230139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and Interaction in the pH-Dependent Phase Behavior of Nanoparticle-Protein Systems.
    Yadav I; Kumar S; Aswal VK; Kohlbrecher J
    Langmuir; 2017 Feb; 33(5):1227-1238. PubMed ID: 28079383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH-induced coacervation in complexes of bovine serum albumin and cationic polyelectrolytes.
    Kaibara K; Okazaki T; Bohidar HB; Dubin PL
    Biomacromolecules; 2000; 1(1):100-7. PubMed ID: 11709831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge stoichiometry inside polyelectrolyte-protein complexes: a direct SANS measurement for the PSSNa-lysozyme system.
    Gummel J; Boué F; Demé B; Cousin F
    J Phys Chem B; 2006 Dec; 110(49):24837-46. PubMed ID: 17149903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning of protein-surfactant interaction to modify the resultant structure.
    Mehan S; Aswal VK; Kohlbrecher J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032713. PubMed ID: 26465504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational effect on small angle neutron scattering behavior of interacting polyelectrolyte solutions: a perspective of integral equation theory.
    Shew CY; Do C; Hong K; Liu Y; Porcar L; Smith GS; Chen WR
    J Chem Phys; 2012 Jul; 137(2):024907. PubMed ID: 22803562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.