These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 18851083)
1. Boundary-induced reentry in homogeneous excitable tissue. Siso-Nadal F; Otani NF; Gilmour RF; Fox JJ Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031925. PubMed ID: 18851083 [TBL] [Abstract][Full Text] [Related]
2. New index for categorising cardiac reentrant wave: in silico evaluation. Shim EB; Hong SB; Lim KM; Leem CH; Youn CH; Pak HN; Earm YE; Noble D IET Syst Biol; 2011 Sep; 5(5):317-23. PubMed ID: 22010758 [TBL] [Abstract][Full Text] [Related]
3. Conditions for propagation and block of excitation in an asymptotic model of atrial tissue. Simitev RD; Biktashev VN Biophys J; 2006 Apr; 90(7):2258-69. PubMed ID: 16415048 [TBL] [Abstract][Full Text] [Related]
4. Formation of fast spirals on heterogeneities of an excitable medium. Makkes van der Deijl GB; Panfilov AV Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):012901. PubMed ID: 18764001 [TBL] [Abstract][Full Text] [Related]
5. Electrophysiological substrate for a dominant reentrant source during atrial fibrillation. Aslanidi OV; Robinson R; Cheverton D; Boyett MR; Zhang H Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2819-22. PubMed ID: 19964268 [TBL] [Abstract][Full Text] [Related]
6. Vulnerable window for conduction block in a one-dimensional cable of cardiac cells, 2: multiple extrasystoles. Qu Z; Garfinkel A; Weiss JN Biophys J; 2006 Aug; 91(3):805-15. PubMed ID: 16679366 [TBL] [Abstract][Full Text] [Related]
7. Effects of electrical and structural remodeling on atrial fibrillation maintenance: a simulation study. Krogh-Madsen T; Abbott GW; Christini DJ PLoS Comput Biol; 2012; 8(2):e1002390. PubMed ID: 22383869 [TBL] [Abstract][Full Text] [Related]
9. Transmembrane potential properties of atrial cells at different sites of a spiral wave reentry: cellular evidence for an excitable but nonexcited core. Karagueuzian HS; Athill CA; Yashima M; Ikeda T; Wu TJ; Mandel WJ; Chen PS Pacing Clin Electrophysiol; 1998 Nov; 21(11 Pt 2):2360-5. PubMed ID: 9825348 [TBL] [Abstract][Full Text] [Related]
10. Effect of anisotropy on ventricular vulnerability to unidirectional block and reentry by single premature stimulation during normal sinus rhythm in rat heart. Rossi S; Buccarello A; Ershler PR; Lux RL; Callegari S; Corradi D; Carnevali L; Sgoifo A; Miragoli M; Musso E; Macchi E Am J Physiol Heart Circ Physiol; 2017 Mar; 312(3):H584-H607. PubMed ID: 28011584 [TBL] [Abstract][Full Text] [Related]
11. The mechanism of termination of reentrant activity in ventricular fibrillation. Cha YM; Birgersdotter-Green U; Wolf PL; Peters BB; Chen PS Circ Res; 1994 Mar; 74(3):495-506. PubMed ID: 8118958 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of transition from normal to reentrant electrical activity in a model of rabbit atrial tissue: interaction of tissue heterogeneity and anisotropy. Aslanidi OV; Boyett MR; Dobrzynski H; Li J; Zhang H Biophys J; 2009 Feb; 96(3):798-817. PubMed ID: 19186122 [TBL] [Abstract][Full Text] [Related]
13. Wave block formation in homogeneous excitable media following premature excitations: dependence on restitution relations. Comtois P; Vinet A; Nattel S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031919. PubMed ID: 16241494 [TBL] [Abstract][Full Text] [Related]
14. Influence of the passive anisotropic properties on directional differences in propagation following modification of the sodium conductance in human atrial muscle. A model of reentry based on anisotropic discontinuous propagation. Spach MS; Dolber PC; Heidlage JF Circ Res; 1988 Apr; 62(4):811-32. PubMed ID: 2450697 [TBL] [Abstract][Full Text] [Related]
15. The pinwheel experiment revisited: effects of cellular electrophysiological properties on vulnerability to cardiac reentry. Yang MJ; Tran DX; Weiss JN; Garfinkel A; Qu Z Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1781-90. PubMed ID: 17586622 [TBL] [Abstract][Full Text] [Related]
16. Cellular uncoupling can unmask dispersion of action potential duration in ventricular myocardium. A computer modeling study. Lesh MD; Pring M; Spear JF Circ Res; 1989 Nov; 65(5):1426-40. PubMed ID: 2805251 [TBL] [Abstract][Full Text] [Related]
17. Characteristics of the temporal and spatial excitable gap in anisotropic reentrant circuits causing sustained ventricular tachycardia. Peters NS; Coromilas J; Hanna MS; Josephson ME; Costeas C; Wit AL Circ Res; 1998 Feb; 82(2):279-93. PubMed ID: 9468199 [TBL] [Abstract][Full Text] [Related]
18. Predicting the entrainment of reentrant cardiac waves using phase resetting curves. Glass L; Nagai Y; Hall K; Talajic M; Nattel S Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021908. PubMed ID: 11863564 [TBL] [Abstract][Full Text] [Related]
19. Attachment of meandering reentrant wave fronts to anatomic obstacles in the atrium. Role of the obstacle size. Ikeda T; Yashima M; Uchida T; Hough D; Fishbein MC; Mandel WJ; Chen PS; Karagueuzian HS Circ Res; 1997 Nov; 81(5):753-64. PubMed ID: 9351449 [TBL] [Abstract][Full Text] [Related]
20. Dispersion of refractoriness and induction of reentry due to chaos synchronization in a model of cardiac tissue. Xie Y; Hu G; Sato D; Weiss JN; Garfinkel A; Qu Z Phys Rev Lett; 2007 Sep; 99(11):118101. PubMed ID: 17930473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]