BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18851139)

  • 1. Finite-sized gas bubble motion in a blood vessel: non-Newtonian effects.
    Mukundakrishnan K; Ayyaswamy PS; Eckmann DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036303. PubMed ID: 18851139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of a soluble surfactant on a finite sized bubble motion in a blood vessel.
    Swaminathan TN; Mukundakrishnan K; Ayyaswamy PS; Eckmann DM
    J Fluid Mech; 2010 Jan; 642():509-539. PubMed ID: 20305744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bubble motion in a blood vessel: shear stress induced endothelial cell injury.
    Mukundakrishnan K; Ayyaswamy PS; Eckmann DM
    J Biomech Eng; 2009 Jul; 131(7):074516. PubMed ID: 19640152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bubble motion through a generalized power-law fluid flowing in a vertical tube.
    Mukundakrishnan K; Eckmann DM; Ayyaswamy PS
    Ann N Y Acad Sci; 2009 Apr; 1161():256-67. PubMed ID: 19426324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant properties differentially influence intravascular gas embolism mechanics.
    Swaminathan TN; Ayyaswamy PS; Eckmann DM
    Ann Biomed Eng; 2010 Dec; 38(12):3649-63. PubMed ID: 20625830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational simulation of hematocrit effects on arterial gas embolism dynamics.
    Mukundakrishnan K; Ayyaswamy PS; Eckmann DM
    Aviat Space Environ Med; 2012 Feb; 83(2):92-101. PubMed ID: 22303587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder.
    Mukundakrishnan K; Quan S; Eckmann DM; Ayyaswamy PS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036308. PubMed ID: 17930342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow structures and red blood cell dynamics in arteriole of dilated or constricted cross section.
    Gambaruto AM
    J Biomech; 2016 Jul; 49(11):2229-2240. PubMed ID: 26822224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional model of an ultrasound contrast agent gas bubble and its mechanical effects on microvessels.
    Hosseinkhah N; Hynynen K
    Phys Med Biol; 2012 Feb; 57(3):785-808. PubMed ID: 22252221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-Newtonian flow of blood in arterioles: consequences for wall shear stress measurements.
    Sriram K; Intaglietta M; Tartakovsky DM
    Microcirculation; 2014 Oct; 21(7):628-39. PubMed ID: 24703006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear and nonlinear analyses of pulsatile blood flow in a cylindrical tube.
    El-Khatib FH; Damiano ER
    Biorheology; 2003; 40(5):503-22. PubMed ID: 12897417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study.
    Chen C; Gu Y; Tu J; Guo X; Zhang D
    Ultrasonics; 2016 Mar; 66():54-64. PubMed ID: 26651263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.
    Ramiar A; Larimi MM; Ranjbar AA
    Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear stress induced by a gas bubble pulsating in an ultrasonic field near a wall.
    Krasovitski B; Kimmel E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Aug; 51(8):973-9. PubMed ID: 15344403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical modeling of the transport to an intravascular bubble in a tube with a soluble/insoluble surfactant.
    Ayyaswamy PS; Zhang J; Eckmann DM
    Ann N Y Acad Sci; 2006 Sep; 1077():270-87. PubMed ID: 17124130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of blood flow: modeling of Fåhraeus and Fåhraeus-Lindqvist effects using a shear-induced red blood cell migration model.
    Chebbi R
    J Biol Phys; 2018 Dec; 44(4):591-603. PubMed ID: 30219980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Bubble Rising in Shear-Thinning and Elastoviscoplastic Fluids Using a Geometric Volume of Fluid Algorithm.
    Fakhari A; Fernandes C
    Polymers (Basel); 2023 Aug; 15(16):. PubMed ID: 37631494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of microbubbles from axisymmetric flow focusing in the jetting regime for moderate Reynolds numbers.
    Vega EJ; Acero AJ; Montanero JM; Herrada MA; Gañán-Calvo AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063012. PubMed ID: 25019884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.