These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 18851154)

  • 21. Numerical investigation of bubble-induced Marangoni convection.
    O'Shaughnessy SM; Robinson AJ
    Ann N Y Acad Sci; 2009 Apr; 1161():304-20. PubMed ID: 19426328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Waves at surfactant-laden liquid-liquid crystal interface.
    Lishchuk SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011711. PubMed ID: 17677475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gas spreading on a heated wall wetted by liquid.
    Garrabos Y; Lecoutre-Chabot C; Hegseth J; Nikolayev VS; Beysens D; Delville JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051602. PubMed ID: 11735934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Steady two-layer gravity-driven thin-film flow.
    Alba K; Khayat RE; Pandher RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056304. PubMed ID: 18643158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reflection and transmission of plane unbounded electromagnetic waves at an absorbing-nonabsorbing interface with numerical calculations for an ocean-air interface.
    Mahan AI; Bitterli CV
    Appl Opt; 1981 Oct; 20(19):3345-59. PubMed ID: 20333154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the stability of two rigidly rotating magnetic fluid columns in zero gravity in the presence of mass and heat transfer.
    Moatimid GM
    J Colloid Interface Sci; 2002 Jun; 250(1):108-20. PubMed ID: 16290641
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-consistent theory of capillary-gravity-wave generation by small moving objects.
    Chepelianskii AD; Schindler M; Chevy F; Raphaël E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016306. PubMed ID: 20365459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat can cool near-critical fluids.
    Beysens D; Fröhlich T; Garrabos Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051201. PubMed ID: 22181401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Renormalization-group calculation of the dependence on gravity of the surface tension and bending rigidity of a fluid interface.
    Segovia-López JG; Romero-Rochín V
    Phys Rev Lett; 2001 Mar; 86(11):2369-72. PubMed ID: 11289931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wetting of liquid-crystal surfaces and induced smectic layering at a nematic-liquid interface: an x-ray reflectivity study.
    Fukuto M; Gang O; Alvine KJ; Ocko BM; Pershan PS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031607. PubMed ID: 18517395
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disjoining pressure and capillarity in the constrained vapor bubble heat transfer system.
    Chatterjee A; Plawsky JL; Wayner PC
    Adv Colloid Interface Sci; 2011 Oct; 168(1-2):40-9. PubMed ID: 21470588
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature effects on capillary instabilities in a thin nematic liquid crystalline fiber embedded in a viscous matrix.
    Cheong AG; Rey AD
    Eur Phys J E Soft Matter; 2002 Oct; 9(2):171-93. PubMed ID: 15015115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Verification of Onsager's reciprocal relations for evaporation and condensation using non-equilibrium molecular dynamics.
    Xu J; Kjelstrup S; Bedeaux D; Røsjorde A; Rekvig L
    J Colloid Interface Sci; 2006 Jul; 299(1):452-63. PubMed ID: 16481001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decay rates of internal waves in a fluid near the liquid-vapor critical point.
    Gurski KF; Pego RL
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):517-24. PubMed ID: 11088487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drops on an arbitrarily wetting substrate: a phase field description.
    Borcia R; Borcia ID; Bestehorn M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 2):066307. PubMed ID: 19256945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Momentum effects in steady nucleate pool boiling during microgravity.
    Merte H
    Ann N Y Acad Sci; 2004 Nov; 1027():196-216. PubMed ID: 15644357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of gas adsorption isotherm and liquid contact angle on capillary force for sphere-on-flat and cone-on-flat geometries.
    Hsiao E; Marino MJ; Kim SH
    J Colloid Interface Sci; 2010 Dec; 352(2):549-57. PubMed ID: 20883999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.
    Santos MV; Sansinena M; Zaritzky N; Chirife J
    Cryo Letters; 2012; 33(1):31-40. PubMed ID: 22434120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Criteria for approximating certain microgravity flow boiling characteristics in Earth gravity.
    Merte H; Park J; Shultz WW; Keller RB
    Ann N Y Acad Sci; 2002 Oct; 974():481-503. PubMed ID: 12446343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic boundary condition at a vapor-liquid interface.
    Ishiyama T; Yano T; Fujikawa S
    Phys Rev Lett; 2005 Aug; 95(8):084504. PubMed ID: 16196864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.