BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 18851323)

  • 1. Manipulating the magnetic structure of Co core/CoO shell nanoparticles: implications for controlling the exchange bias.
    Inderhees SE; Borchers JA; Green KS; Kim MS; Sun K; Strycker GL; Aronson MC
    Phys Rev Lett; 2008 Sep; 101(11):117202. PubMed ID: 18851323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of rotatable uncompensated spins in the exchange bias system Co/CoO-MgO.
    Ge C; Wan X; Pellegrin E; Hu Z; Manuel Valvidares S; Barla A; Liang WI; Chu YH; Zou W; Du Y
    Nanoscale; 2013 Nov; 5(21):10236-41. PubMed ID: 24056958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo study of the exchange bias effect in Co/CoO core-shell nanowires.
    Patsopoulos A; Kechrakos D
    Nanotechnology; 2017 Jul; 28(28):285701. PubMed ID: 28590939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-spin cobalt(II) ions in square planar coordination: structures and magnetism of the oxysulfides Sr2CoO2Cu2S2 and Ba2CoO2Cu2S2 and their solid solution.
    Smura CF; Parker DR; Zbiri M; Johnson MR; Gál ZA; Clarke SJ
    J Am Chem Soc; 2011 Mar; 133(8):2691-705. PubMed ID: 21302927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of interface exchange magnetism in self-assembled cobalt-fullerene nanocomposites exposed to air.
    Lavrentiev V; Stupakov A; Lavrentieva I; Motylenko M; Barchuk M; Rafaja D
    Nanotechnology; 2017 Mar; 28(12):125704. PubMed ID: 28145895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning the coercivity and exchange bias by controlling the interface coupling in bimagnetic core/shell nanoparticles.
    Lavorato GC; Lima E; Troiani HE; Zysler RD; Winkler EL
    Nanoscale; 2017 Jul; 9(29):10240-10247. PubMed ID: 28696450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Temperature Magnetic Stabilization of Cobalt Nanoparticles by an Antiferromagnetic Proximity Effect.
    De Toro JA; Marques DP; Muñiz P; Skumryev V; Sort J; Givord D; Nogués J
    Phys Rev Lett; 2015 Jul; 115(5):057201. PubMed ID: 26274435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong interfacial coupling through exchange interactions in soft/hard core-shell nanoparticles as a function of cationic distribution.
    Sartori K; Cotin G; Bouillet C; Halté V; Bégin-Colin S; Choueikani F; Pichon BP
    Nanoscale; 2019 Jul; 11(27):12946-12958. PubMed ID: 31259329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of Exchange Bias on Interparticle Interactions in Co/CoO Core/Shell Nanostructures.
    Goswami S; Gupta P; Nayak S; Bedanta S; Iglesias Ò; Chakraborty M; De D
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36144947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization.
    Chen CJ; Chiang RK; Kamali S; Wang SL
    Nanoscale; 2015 Sep; 7(34):14332-43. PubMed ID: 26243163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable High-Field Magnetization in Strongly Exchange-Coupled Freestanding Co/CoO Core/Shell Coaxial Nanowires.
    Salazar-Alvarez G; Geshev J; Agramunt-Puig S; Navau C; Sanchez A; Sort J; Nogués J
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22477-83. PubMed ID: 27502034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-vacuum annealing reduction of Co/CoO nanoparticles.
    López Antón R; González JA; Andrés JP; Canales-Vázquez J; De Toro JA; Riveiro JM
    Nanotechnology; 2014 Mar; 25(10):105702. PubMed ID: 24532090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic proximity effect features in antiferromagnetic/ferrimagnetic core-shell nanoparticles.
    Golosovsky IV; Salazar-Alvarez G; López-Ortega A; González MA; Sort J; Estrader M; Suriñach S; Baró MD; Nogués J
    Phys Rev Lett; 2009 Jun; 102(24):247201. PubMed ID: 19659040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-induced exchange bias in single-phase CoO nanoparticles.
    Sharma V; Pal S; Sharma D; Shukla DK; Chaudhary RJ; Okram GS
    Nanotechnology; 2024 Apr; 35(27):. PubMed ID: 38635294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallography-driven positive exchange bias in Co/CoO bilayers.
    Suszka AK; Idigoras O; Nikulina E; Chuvilin A; Berger A
    Phys Rev Lett; 2012 Oct; 109(17):177205. PubMed ID: 23215220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exchange Bias Optimization by Controlled Oxidation of Cobalt Nanoparticle Films Prepared by Sputter Gas Aggregation.
    Antón RL; González JA; Andrés JP; Normile PS; Canales-Vázquez J; Muñiz P; Riveiro JM; De Toro JA
    Nanomaterials (Basel); 2017 Mar; 7(3):. PubMed ID: 28336895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal polymorphism: dependence of oxygen diffusion through 2D ordered Co nanocrystals.
    Yang Z; Yang J; Bergström J; Khazen K; Pileni MP
    Phys Chem Chem Phys; 2014 Jun; 16(21):9791-6. PubMed ID: 24430503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous magnetic properties of mechanically milled cobalt oxide nanoparticles.
    Mishra SR; Dubenko I; Losby J; Ghosh lK; Khan M; Ali N
    J Nanosci Nanotechnol; 2005 Dec; 5(12):2076-81. PubMed ID: 16430143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic response of hybrid ferromagnetic and antiferromagnetic core-shell nanostructures.
    Khan U; Li WJ; Adeela N; Irfan M; Javed K; Wan CH; Riaz S; Han XF
    Nanoscale; 2016 Mar; 8(11):6064-70. PubMed ID: 26931335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The magnetic proximity effect in a ferrimagnetic Fe3O4 core/ferrimagnetic γ-Mn2O3 shell nanoparticle system.
    Manna PK; Yusuf SM; Basu M; Pal T
    J Phys Condens Matter; 2011 Dec; 23(50):506004. PubMed ID: 22129648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.