These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18851418)

  • 1. Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: the fountain of probability.
    Roichman Y; Sun B; Stolarski A; Grier DG
    Phys Rev Lett; 2008 Sep; 101(12):128301. PubMed ID: 18851418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brownian vortexes.
    Sun B; Lin J; Darby E; Grosberg AY; Grier DG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):010401. PubMed ID: 19658638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perturbative theory for Brownian vortexes.
    Moyses HW; Bauer RO; Grosberg AY; Grier DG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062144. PubMed ID: 26172698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonequilibrium Dynamics Induced by Scattering Forces for Optically Trapped Nanoparticles in Strongly Inertial Regimes.
    Amarouchene Y; Mangeat M; Montes BV; Ondic L; Guérin T; Dean DS; Louyer Y
    Phys Rev Lett; 2019 May; 122(18):183901. PubMed ID: 31144892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-order nonconservative motion of optically trapped nonspherical particles.
    Simpson SH; Hanna S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031141. PubMed ID: 21230059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of nonconservative scattering forces and damping on Brownian particles in optical traps.
    Mangeat M; Amarouchene Y; Louyer Y; Guérin T; Dean DS
    Phys Rev E; 2019 May; 99(5-1):052107. PubMed ID: 31212517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxation of a colloidal particle into a nonequilibrium steady state.
    Blickle V; Mehl J; Bechinger C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):060104. PubMed ID: 19658456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical forces and torques in nonuniform beams of light.
    Ruffner DB; Grier DG
    Phys Rev Lett; 2012 Apr; 108(17):173602. PubMed ID: 22680864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise associated with nonconservative forces in optical traps.
    de Messieres M; Denesyuk NA; La Porta A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031108. PubMed ID: 22060329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic Torque Microscopy of the Nonconservative Force Field for Optically Trapped Silicon Nanowires.
    Irrera A; Magazzù A; Artoni P; Simpson SH; Hanna S; Jones PH; Priolo F; Gucciardi PG; Maragò OM
    Nano Lett; 2016 Jul; 16(7):4181-8. PubMed ID: 27280642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Brownian vortex at the interface.
    Khan M; Sood AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041408. PubMed ID: 21599159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonconservative dynamics of optically trapped high-aspect-ratio nanowires.
    Toe WJ; Ortega-Piwonka I; Angstmann CN; Gao Q; Tan HH; Jagadish C; Henry BI; Reece PJ
    Phys Rev E; 2016 Feb; 93(2):022137. PubMed ID: 26986318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct measurement of the nonconservative force field generated by optical tweezers.
    Wu P; Huang R; Tischer C; Jonas A; Florin EL
    Phys Rev Lett; 2009 Sep; 103(10):108101. PubMed ID: 19792342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental verification of a modified fluctuation-dissipation relation for a micron-sized particle in a nonequilibrium steady state.
    Gomez-Solano JR; Petrosyan A; Ciliberto S; Chetrite R; Gawedzki K
    Phys Rev Lett; 2009 Jul; 103(4):040601. PubMed ID: 19659337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous collective dynamics in optically driven colloidal rings.
    Roichman Y; Grier DG; Zaslavsky G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):020401. PubMed ID: 17358303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flux reversal in a two-state symmetric optical thermal ratchet.
    Lee SH; Grier DG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):060102. PubMed ID: 16089710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorting colloidal particles into multiple channels with optical forces: prismatic optical fractionation.
    Xiao K; Grier DG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051407. PubMed ID: 21230479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer simulation on the collision-sticking dynamics of two colloidal particles in an optical trap.
    Xu S; Sun Z
    J Chem Phys; 2007 Apr; 126(14):144903. PubMed ID: 17444739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant colloidal diffusivity on corrugated optical vortices.
    Lee SH; Grier DG
    Phys Rev Lett; 2006 May; 96(19):190601. PubMed ID: 16803093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic interactions of two Brownian hard spheres in the presence of depletants.
    Karzar-Jeddi M; Tuinier R; Taniguchi T; Fan TH
    J Chem Phys; 2014 Jun; 140(21):214906. PubMed ID: 24908040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.