These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 18851529)

  • 1. Collective resonances in gold nanoparticle arrays.
    Auguié B; Barnes WL
    Phys Rev Lett; 2008 Oct; 101(14):143902. PubMed ID: 18851529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffractive coupling in gold nanoparticle arrays and the effect of disorder.
    Auguié B; Barnes WL
    Opt Lett; 2009 Feb; 34(4):401-3. PubMed ID: 19373321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dipole-lattice nanoparticle resonances in finite arrays.
    Karimi V; Babicheva VE
    Opt Express; 2023 May; 31(10):16857-16871. PubMed ID: 37157755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning of narrow geometric resonances in Ag/Au binary nanoparticle arrays.
    Li J; Gu Y; Gong Q
    Opt Express; 2010 Aug; 18(17):17684-98. PubMed ID: 20721155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of Fano resonances in all-dielectric nanoparticle oligomers.
    Chong KE; Hopkins B; Staude I; Miroshnichenko AE; Dominguez J; Decker M; Neshev DN; Brener I; Kivshar YS
    Small; 2014 May; 10(10):1985-90. PubMed ID: 24616191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms.
    Zorić I; Zäch M; Kasemo B; Langhammer C
    ACS Nano; 2011 Apr; 5(4):2535-46. PubMed ID: 21438568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grating-induced plasmon mode in gold nanoparticle arrays.
    Félidj N; Laurent G; Aubard J; Lévi G; Hohenau A; Krenn JR; Aussenegg FR
    J Chem Phys; 2005 Dec; 123(22):221103. PubMed ID: 16375460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybridization of Lattice Resonances.
    Baur S; Sanders S; Manjavacas A
    ACS Nano; 2018 Feb; 12(2):1618-1629. PubMed ID: 29301081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chiral Surface Lattice Resonances.
    Goerlitzer ESA; Mohammadi R; Nechayev S; Volk K; Rey M; Banzer P; Karg M; Vogel N
    Adv Mater; 2020 Jun; 32(22):e2001330. PubMed ID: 32319171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of gold nanoparticles in optical resonators.
    Jiménez-Solano A; López-López C; Sánchez-Sobrado O; Luque JM; Calvo ME; Fernández-López C; Sánchez-Iglesias A; Liz-Marzán LM; Míguez H
    Langmuir; 2012 Jun; 28(24):9161-7. PubMed ID: 22537283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super- and Subradiant Lattice Resonances in Bipartite Nanoparticle Arrays.
    Cuartero-González A; Sanders S; Zundel L; Fernández-Domínguez AI; Manjavacas A
    ACS Nano; 2020 Sep; 14(9):11876-11887. PubMed ID: 32794729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel collective resonances in arrays of gold nanorods.
    Vitrey A; Aigouy L; Prieto P; García-Martín JM; González MU
    Nano Lett; 2014; 14(4):2079-85. PubMed ID: 24645987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects.
    Roiter Y; Minko I; Nykypanchuk D; Tokarev I; Minko S
    Nanoscale; 2012 Jan; 4(1):284-92. PubMed ID: 22081128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental demonstration of sharp Fano resonance within binary gold nanodisk array through lattice coupling effects.
    Zhao W; Jiang Y
    Opt Lett; 2015 Jan; 40(1):93-6. PubMed ID: 25531617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled interparticle spacing for surface-modified gold nanoparticle aggregates.
    Basu S; Pande S; Jana S; Bolisetty S; Pal T
    Langmuir; 2008 May; 24(10):5562-8. PubMed ID: 18426230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-enhanced depolarization of reflected light from arrays of nanoparticle dimers.
    Walsh GF; Forestiere C; Dal Negro L
    Opt Express; 2011 Oct; 19(21):21081-90. PubMed ID: 21997116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic fields around silver nanoparticles and dimers.
    Hao E; Schatz GC
    J Chem Phys; 2004 Jan; 120(1):357-66. PubMed ID: 15267296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, electron tomography and single-particle optical response of twisted gold nano-bipyramids.
    Navarro JR; Manchon D; Lerouge F; Cottancin E; Lermé J; Bonnet C; Chaput F; Mosset A; Pellarin M; Parola S
    Nanotechnology; 2012 Apr; 23(14):145707. PubMed ID: 22433232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.