These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18851657)

  • 1. Characterization of strong light-matter coupling in semiconductor quantum-dot microcavities via photon-statistics spectroscopy.
    Schneebeli L; Kira M; Koch SW
    Phys Rev Lett; 2008 Aug; 101(9):097401. PubMed ID: 18851657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system.
    Kasprzak J; Reitzenstein S; Muljarov EA; Kistner C; Schneider C; Strauss M; Höfling S; Forchel A; Langbein W
    Nat Mater; 2010 Apr; 9(4):304-8. PubMed ID: 20208523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The single quantum dot-laser: lasing and strong coupling in the high-excitation regime.
    Gies C; Florian M; Gartner P; Jahnke F
    Opt Express; 2011 Jul; 19(15):14370-88. PubMed ID: 21934800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photon statistics of semiconductor microcavity lasers.
    Ulrich SM; Gies C; Ates S; Wiersig J; Reitzenstein S; Hofmann C; Löffler A; Forchel A; Jahnke F; Michler P
    Phys Rev Lett; 2007 Jan; 98(4):043906. PubMed ID: 17358772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum interference induced photon blockade in a coupled single quantum dot-cavity system.
    Tang J; Geng W; Xu X
    Sci Rep; 2015 Mar; 5():9252. PubMed ID: 25783560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system.
    Fink JM; Göppl M; Baur M; Bianchetti R; Leek PJ; Blais A; Wallraff A
    Nature; 2008 Jul; 454(7202):315-8. PubMed ID: 18633413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonon-dressed Mollow triplet in the regime of cavity quantum electrodynamics: excitation-induced dephasing and nonperturbative cavity feeding effects.
    Roy C; Hughes S
    Phys Rev Lett; 2011 Jun; 106(24):247403. PubMed ID: 21770598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum-memory effects in the emission of quantum-dot microcavities.
    Berger C; Huttner U; Mootz M; Kira M; Koch SW; Tempel JS; Aßmann M; Bayer M; Mintairov AM; Merz JL
    Phys Rev Lett; 2014 Aug; 113(9):093902. PubMed ID: 25215985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Few-photon model of the optical emission of semiconductor quantum dots.
    Richter M; Carmele A; Sitek A; Knorr A
    Phys Rev Lett; 2009 Aug; 103(8):087407. PubMed ID: 19792765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum switching between nonclassical correlated single photons and two-photon bundles in a two-photon Jaynes-Cummings model.
    Tang J
    Opt Express; 2023 Apr; 31(8):12471-12486. PubMed ID: 37157406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoluminescence of a microcavity quantum dot system in the quantum strong-coupling regime.
    Ishida N; Byrnes T; Nori F; Yamamoto Y
    Sci Rep; 2013; 3():1180. PubMed ID: 23378913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photon-Statistics Excitation Spectroscopy of a Quantum-Dot Micropillar Laser.
    Kazimierczuk T; Schmutzler J; Assmann M; Schneider C; Kamp M; Höfling S; Bayer M
    Phys Rev Lett; 2015 Jul; 115(2):027401. PubMed ID: 26207501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photon antibunching from a single quantum-dot-microcavity system in the strong coupling regime.
    Press D; Götzinger S; Reitzenstein S; Hofmann C; Löffler A; Kamp M; Forchel A; Yamamoto Y
    Phys Rev Lett; 2007 Mar; 98(11):117402. PubMed ID: 17501092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Density operator of a system pumped with polaritons: a Jaynes-Cummings-like approach.
    Quesada N; Vinck-Posada H; Rodríguez BA
    J Phys Condens Matter; 2011 Jan; 23(2):025301. PubMed ID: 21406838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.
    Srinivasan K; Painter O
    Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiconductor quantum dot: a quantum light source of multicolor photons with tunable statistics.
    Regelman DV; Mizrahi U; Gershoni D; Ehrenfreund E; Schoenfeld WV; Petroff PM
    Phys Rev Lett; 2001 Dec; 87(25):257401. PubMed ID: 11736603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars.
    Liu S; Wei Y; Li X; Yu Y; Liu J; Yu S; Wang X
    Light Sci Appl; 2021 Jul; 10(1):158. PubMed ID: 34326302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A classical simulation of nonlinear Jaynes-Cummings and Rabi models in photonic lattices.
    Rodríguez-Lara BM; Soto-Eguibar F; Cárdenas AZ; Moya-Cessa HM
    Opt Express; 2013 May; 21(10):12888-98. PubMed ID: 23736508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong coupling of two interacting excitons confined in a nanocavity-quantum dot system.
    Cárdenas PC; Quesada N; Vinck-Posada H; Rodríguez BA
    J Phys Condens Matter; 2011 Jul; 23(26):265304. PubMed ID: 21673402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.