These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 18851975)
1. Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active-site metal ion. Zalatan JG; Fenn TD; Herschlag D J Mol Biol; 2008 Dec; 384(5):1174-89. PubMed ID: 18851975 [TBL] [Abstract][Full Text] [Related]
3. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution. Zalatan JG; Fenn TD; Brunger AT; Herschlag D Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180 [TBL] [Abstract][Full Text] [Related]
4. High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography. Bobyr E; Lassila JK; Wiersma-Koch HI; Fenn TD; Lee JJ; Nikolic-Hughes I; Hodgson KO; Rees DC; Hedman B; Herschlag D J Mol Biol; 2012 Jan; 415(1):102-17. PubMed ID: 22056344 [TBL] [Abstract][Full Text] [Related]
5. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction. Catrina I; O'Brien PJ; Purcell J; Nikolic-Hughes I; Zalatan JG; Hengge AC; Herschlag D J Am Chem Soc; 2007 May; 129(17):5760-5. PubMed ID: 17411045 [TBL] [Abstract][Full Text] [Related]
6. QM/MM analysis suggests that Alkaline Phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily. Hou G; Cui Q J Am Chem Soc; 2012 Jan; 134(1):229-46. PubMed ID: 22097879 [TBL] [Abstract][Full Text] [Related]
7. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. Stec B; Holtz KM; Kantrowitz ER J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454 [TBL] [Abstract][Full Text] [Related]
8. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase. Wiersma-Koch H; Sunden F; Herschlag D Biochemistry; 2013 Dec; 52(51):9167-76. PubMed ID: 24261692 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily. Sunden F; AlSadhan I; Lyubimov AY; Ressl S; Wiersma-Koch H; Borland J; Brown CL; Johnson TA; Singh Z; Herschlag D J Am Chem Soc; 2016 Nov; 138(43):14273-14287. PubMed ID: 27670607 [TBL] [Abstract][Full Text] [Related]
11. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase. O'Brien PJ; Herschlag D Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834 [TBL] [Abstract][Full Text] [Related]
12. The mechanism of the alkaline phosphatase reaction: insights from NMR, crystallography and site-specific mutagenesis. Holtz KM; Kantrowitz ER FEBS Lett; 1999 Nov; 462(1-2):7-11. PubMed ID: 10580082 [TBL] [Abstract][Full Text] [Related]
13. Alkaline phosphatase mono- and diesterase reactions: comparative transition state analysis. Zalatan JG; Herschlag D J Am Chem Soc; 2006 Feb; 128(4):1293-303. PubMed ID: 16433548 [TBL] [Abstract][Full Text] [Related]
14. Kinetic isotope effects for alkaline phosphatase reactions: implications for the role of active-site metal ions in catalysis. Zalatan JG; Catrina I; Mitchell R; Grzyska PK; O'brien PJ; Herschlag D; Hengge AC J Am Chem Soc; 2007 Aug; 129(31):9789-98. PubMed ID: 17630738 [TBL] [Abstract][Full Text] [Related]
15. Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase. Le Du MH; Lamoure C; Muller BH; Bulgakov OV; Lajeunesse E; Ménez A; Boulain JC J Mol Biol; 2002 Mar; 316(4):941-53. PubMed ID: 11884134 [TBL] [Abstract][Full Text] [Related]
16. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. Kim EE; Wyckoff HW J Mol Biol; 1991 Mar; 218(2):449-64. PubMed ID: 2010919 [TBL] [Abstract][Full Text] [Related]
17. Alkaline phosphatase catalysis is ultrasensitive to charge sequestered between the active site zinc ions. Nikolic-Hughes I; O'brien PJ; Herschlag D J Am Chem Soc; 2005 Jul; 127(26):9314-5. PubMed ID: 15984827 [TBL] [Abstract][Full Text] [Related]
18. Promiscuous sulfatase activity and thio-effects in a phosphodiesterase of the alkaline phosphatase superfamily. Lassila JK; Herschlag D Biochemistry; 2008 Dec; 47(48):12853-9. PubMed ID: 18975918 [TBL] [Abstract][Full Text] [Related]
19. X-ray structure reveals a new class and provides insight into evolution of alkaline phosphatases. Bihani SC; Das A; Nilgiriwala KS; Prashar V; Pirocchi M; Apte SK; Ferrer JL; Hosur MV PLoS One; 2011; 6(7):e22767. PubMed ID: 21829507 [TBL] [Abstract][Full Text] [Related]
20. DNA cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites. Horton NC; Perona JJ Biochemistry; 2004 Jun; 43(22):6841-57. PubMed ID: 15170321 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]