These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 18852060)

  • 1. Evolution of the diverse array of phosphagen systems present in annelids.
    Suzuki T; Uda K; Adachi M; Sanada H; Tanaka K; Mizuta C; Ishida K; Ellington WR
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Jan; 152(1):60-6. PubMed ID: 18852060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of the cytoplasmic and mitochondrial phosphagen kinases unique to annelid groups.
    Tanaka K; Uda K; Shimada M; Takahashi K; Gamou S; Ellington WR; Suzuki T
    J Mol Evol; 2007 Nov; 65(5):616-25. PubMed ID: 17932618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin and properties of cytoplasmic and mitochondrial isoforms of taurocyamine kinase.
    Uda K; Saishoji N; Ichinari S; Ellington WR; Suzuki T
    FEBS J; 2005 Jul; 272(14):3521-30. PubMed ID: 16008553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphagen kinase of the giant tubeworm Riftia pachyptila. Cloning and expression of cytoplasmic and mitochondrial isoforms of taurocyamine kinase.
    Uda K; Tanaka K; Bailly X; Zal F; Suzuki T
    Int J Biol Macromol; 2005 Oct; 37(1-2):54-60. PubMed ID: 16188310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases.
    Tanaka K; Suzuki T
    FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of the genes for the isoforms of creatine kinase.
    Bertin M; Pomponi SM; Kokuhuta C; Iwasaki N; Suzuki T; Ellington WR
    Gene; 2007 May; 392(1-2):273-82. PubMed ID: 17329042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A diverse array of creatine kinase and arginine kinase isoform genes is present in the starlet sea anemone Nematostella vectensis, a cnidarian model system for studying developmental evolution.
    Uda K; Ellington WR; Suzuki T
    Gene; 2012 Apr; 497(2):214-27. PubMed ID: 22305986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase.
    Suzuki T; Kamidochi M; Inoue N; Kawamichi H; Yazawa Y; Furukohri T; Ellington WR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):671-5. PubMed ID: 10359650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variable intron/exon structure in the oligochaete lombricine kinase gene.
    Doumen C
    Gene; 2012 Sep; 505(2):276-82. PubMed ID: 22705027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning and expression of a lombricine kinase from an echiuroid worm: insights into structural correlates of substrate specificity.
    Ellington WR; Bush J
    Biochem Biophys Res Commun; 2002 Mar; 291(4):939-44. PubMed ID: 11866456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypotaurocyamine kinase evolved from a gene for arginine kinase.
    Uda K; Iwai A; Suzuki T
    FEBS Lett; 2005 Dec; 579(30):6756-62. PubMed ID: 16325813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity of phosphagen kinases in annelids: The first sequence report for a putative opheline kinase.
    Yano D; Uda K; Nara M; Suzuki T
    Comp Biochem Physiol B Biochem Mol Biol; 2022 Jan; 257():110662. PubMed ID: 34371154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene structure of the two-domain taurocyamine kinase from Paragonimus westermani: evidence for a distinct lineage of trematode phosphagen kinases.
    Jarilla BR; Tokuhiro S; Nagataki M; Uda K; Suzuki T; Acosta LP; Agatsuma T
    FEBS Lett; 2013 Jul; 587(14):2278-83. PubMed ID: 23751729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arginine kinase from Myzostoma cirriferum, a basal member of annelids.
    Yano D; Mimura S; Uda K; Suzuki T
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Aug; 198():73-8. PubMed ID: 27095694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cDNA identification, comparison and phylogenetic aspects of lombricine kinase from two oligochaete species.
    Doumen C
    Comp Biochem Physiol B Biochem Mol Biol; 2010 Jun; 156(2):137-43. PubMed ID: 20230902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates.
    Suzuki T; Furukohri T
    J Mol Biol; 1994 Apr; 237(3):353-7. PubMed ID: 8145248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and expression of mitochondrial and protoflagellar creatine kinases from a marine sponge: implications for the origin of intracellular energy transport systems.
    Sona S; Suzuki T; Ellington WR
    Biochem Biophys Res Commun; 2004 May; 317(4):1207-14. PubMed ID: 15094398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial Activities of Phosphagen Kinases are Not Widely Distributed in the Invertebrates.
    Ellington WR; Hines AC
    Biol Bull; 1991 Jun; 180(3):505-507. PubMed ID: 29304666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel arginine kinase from the shrimp Neocaridina denticulata: the fourth arginine kinase gene lineage.
    Iwanami K; Iseno S; Uda K; Suzuki T
    Gene; 2009 May; 437(1-2):80-7. PubMed ID: 19268694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.