These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18852090)

  • 41. Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean.
    Horikawa K; Martin EE; Basak C; Onodera J; Seki O; Sakamoto T; Ikehara M; Sakai S; Kawamura K
    Nat Commun; 2015 Jun; 6():7587. PubMed ID: 26119338
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Radiocarbon variability in the western North Atlantic during the last deglaciation.
    Robinson LF; Adkins JF; Keigwin LD; Southon J; Fernandez DP; Wang SL; Scheirer DS
    Science; 2005 Dec; 310(5753):1469-73. PubMed ID: 16322451
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels.
    Lunt DJ; Foster GL; Haywood AM; Stone EJ
    Nature; 2008 Aug; 454(7208):1102-5. PubMed ID: 18756254
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming.
    Stott L; Timmermann A; Thunell R
    Science; 2007 Oct; 318(5849):435-8. PubMed ID: 17901296
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation.
    Schmittner A
    Nature; 2005 Mar; 434(7033):628-33. PubMed ID: 15800620
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Future carbon balance of China's forests under climate change and increasing CO2.
    Ju WM; Chen JM; Harvey D; Wang S
    J Environ Manage; 2007 Nov; 85(3):538-62. PubMed ID: 17187919
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.
    Schmittner A; Galbraith ED
    Nature; 2008 Nov; 456(7220):373-6. PubMed ID: 19020618
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glacial surface temperatures of the southeast Atlantic Ocean.
    Sachs JP; Anderson RF; Lehman SJ
    Science; 2001 Sep; 293(5537):2077-9. PubMed ID: 11557890
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chapter 1. Impacts of the oceans on climate change.
    Reid PC; Fischer AC; Lewis-Brown E; Meredith MP; Sparrow M; Andersson AJ; Antia A; Bates NR; Bathmann U; Beaugrand G; Brix H; Dye S; Edwards M; Furevik T; Gangstø R; Hátún H; Hopcroft RR; Kendall M; Kasten S; Keeling R; Le Quéré C; Mackenzie FT; Malin G; Mauritzen C; Olafsson J; Paull C; Rignot E; Shimada K; Vogt M; Wallace C; Wang Z; Washington R
    Adv Mar Biol; 2009; 56():1-150. PubMed ID: 19895974
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Origins and estimates of uncertainty in predictions of twenty-first century temperature rise.
    Stott PA; Kettleborough JA
    Nature; 2002 Apr; 416(6882):723-6. PubMed ID: 11961551
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Wetter subtropics in a warmer world: Contrasting past and future hydrological cycles.
    Burls NJ; Fedorov AV
    Proc Natl Acad Sci U S A; 2017 Dec; 114(49):12888-12893. PubMed ID: 29158397
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean.
    Gupta AK; Anderson DM; Overpeck JT
    Nature; 2003 Jan; 421(6921):354-7. PubMed ID: 12540924
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Are there pre-Quaternary geological analogues for a future greenhouse warming?
    Haywood AM; Ridgwell A; Lunt DJ; Hill DJ; Pound MJ; Dowsett HJ; Dolan AM; Francis JE; Williams M
    Philos Trans A Math Phys Eng Sci; 2011 Mar; 369(1938):933-56. PubMed ID: 21282155
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation.
    Knorr G; Lohmann G
    Nature; 2003 Jul; 424(6948):532-6. PubMed ID: 12891352
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interannual variability in the North Atlantic Ocean carbon sink.
    Gruber N; Keeling CD; Bates NR
    Science; 2002 Dec; 298(5602):2374-8. PubMed ID: 12493911
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Icebergs in the Nordic Seas Throughout the Late Pliocene.
    Smith YM; Hill DJ; Dolan AM; Haywood AM; Dowsett HJ; Risebrobakken B
    Paleoceanogr Paleoclimatol; 2018 Mar; 33(3):318-335. PubMed ID: 31058258
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Poleward and weakened westerlies during Pliocene warmth.
    Abell JT; Winckler G; Anderson RF; Herbert TD
    Nature; 2021 Jan; 589(7840):70-75. PubMed ID: 33408375
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A reconstruction of regional and global temperature for the past 11,300 years.
    Marcott SA; Shakun JD; Clark PU; Mix AC
    Science; 2013 Mar; 339(6124):1198-201. PubMed ID: 23471405
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene.
    Brierley CM; Fedorov AV; Liu Z; Herbert TD; Lawrence KT; Lariviere JP
    Science; 2009 Mar; 323(5922):1714-8. PubMed ID: 19251592
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oceanic mechanisms for amplification of the 23,000-year ice-volume cycle.
    Ruddiman WF; McIntyre A
    Science; 1981 May; 212(4495):617-27. PubMed ID: 17739384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.