These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18852176)

  • 1. Position-dependent motif characterization using non-negative matrix factorization.
    Hutchins LN; Murphy SM; Singh P; Graber JH
    Bioinformatics; 2008 Dec; 24(23):2684-90. PubMed ID: 18852176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational analysis of plant polyadenylation signals.
    Wu X; Ji G; Li QQ
    Methods Mol Biol; 2015; 1255():3-11. PubMed ID: 25487199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating Genome-Wide Protein-RNA Interactions Using Differential Evolution.
    Li X; Wong KC
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):272-282. PubMed ID: 29990254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico analysis of EST and genomic sequences allowed the prediction of cis-regulatory elements for Entamoeba histolytica mRNA polyadenylation.
    Zamorano A; López-Camarillo C; Orozco E; Weber C; Guillen N; Marchat LA
    Comput Biol Chem; 2008 Aug; 32(4):256-63. PubMed ID: 18514032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes.
    Wang J; Smith PJ; Krainer AR; Zhang MQ
    Nucleic Acids Res; 2005; 33(16):5053-62. PubMed ID: 16147989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational prediction of RNA structural motifs involved in post-transcriptional regulatory processes.
    Rabani M; Kertesz M; Segal E
    Methods Mol Biol; 2011; 714():467-79. PubMed ID: 21431758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences.
    Ji Y; Xu X; Stormo GD
    Bioinformatics; 2004 Jul; 20(10):1591-602. PubMed ID: 14962926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis.
    Kim H; Park H
    Bioinformatics; 2007 Jun; 23(12):1495-502. PubMed ID: 17483501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The RNAz web server: prediction of thermodynamically stable and evolutionarily conserved RNA structures.
    Gruber AR; Neuböck R; Hofacker IL; Washietl S
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W335-8. PubMed ID: 17452347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for aligning RNA secondary structures and its application to RNA motif detection.
    Liu J; Wang JT; Hu J; Tian B
    BMC Bioinformatics; 2005 Apr; 6():89. PubMed ID: 15817128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation.
    Hu J; Lutz CS; Wilusz J; Tian B
    RNA; 2005 Oct; 11(10):1485-93. PubMed ID: 16131587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization and expansion of non-negative matrix factorization.
    Lin X; Boutros PC
    BMC Bioinformatics; 2020 Jan; 21(1):7. PubMed ID: 31906867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatics Approaches to Gain Insights into cis-Regulatory Motifs Involved in mRNA Localization.
    Benoit Bouvrette LP; Blanchette M; Lécuyer E
    Adv Exp Med Biol; 2019; 1203():165-194. PubMed ID: 31811635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PRECISE: software for prediction of cis-acting regulatory elements.
    Trindade LM; van Berloo R; Fiers M; Visser RG
    J Hered; 2005; 96(5):618-22. PubMed ID: 16135709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cis-motifs upstream of the transcription and translation initiation sites are effectively revealed by their positional disequilibrium in eukaryote genomes using frequency distribution curves.
    Berendzen KW; Stüber K; Harter K; Wanke D
    BMC Bioinformatics; 2006 Nov; 7():522. PubMed ID: 17137509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring regulatory elements from a whole genome. An analysis of Helicobacter pylori sigma(80) family of promoter signals.
    Vanet A; Marsan L; Labigne A; Sagot MF
    J Mol Biol; 2000 Mar; 297(2):335-53. PubMed ID: 10715205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SCOPE: a web server for practical de novo motif discovery.
    Carlson JM; Chakravarty A; DeZiel CE; Gross RH
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W259-64. PubMed ID: 17485471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RADAR: a web server for RNA data analysis and research.
    Khaladkar M; Bellofatto V; Wang JT; Tian B; Shapiro BA
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W300-4. PubMed ID: 17517784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneously learning DNA motif along with its position and sequence rank preferences through expectation maximization algorithm.
    Zhang Z; Chang CW; Hugo W; Cheung E; Sung WK
    J Comput Biol; 2013 Mar; 20(3):237-48. PubMed ID: 23461573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized motif discovery in gene regulatory sequences.
    Narang V; Mittal A; Sung WK
    Bioinformatics; 2010 May; 26(9):1152-9. PubMed ID: 20223835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.