BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 18852736)

  • 41. Surface plasmon microcavity for resonant transmission through a slit in a gold film.
    Min Q; Gordon R
    Opt Express; 2008 Jun; 16(13):9708-13. PubMed ID: 18575539
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An electrically-driven GaAs nanowire surface plasmon source.
    Fan P; Colombo C; Huang KC; Krogstrup P; Nygård J; Fontcuberta I Morral A; Brongersma ML
    Nano Lett; 2012 Sep; 12(9):4943-7. PubMed ID: 22924961
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single gold trimers and 3D superstructures exhibit a polarization-independent SERS response.
    Steinigeweg D; Schütz M; Schlücker S
    Nanoscale; 2013 Jan; 5(1):110-3. PubMed ID: 23076725
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams.
    Sancho-Parramon J; Bosch S
    ACS Nano; 2012 Sep; 6(9):8415-23. PubMed ID: 22920735
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diabolical point and conical-like diffraction in periodic plasmonic nanostructures.
    Nam SH; Taylor AJ; Efimov A
    Opt Express; 2010 May; 18(10):10120-6. PubMed ID: 20588866
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characteristics of gap plasmon waveguide with stub structures.
    Matsuzaki Y; Okamoto T; Haraguchi M; Fukui M; Nakagaki M
    Opt Express; 2008 Oct; 16(21):16314-25. PubMed ID: 18852737
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Aluminum for nonlinear plasmonics: resonance-driven polarized luminescence of Al, Ag, and Au nanoantennas.
    Castro-Lopez M; Brinks D; Sapienza R; van Hulst NF
    Nano Lett; 2011 Nov; 11(11):4674-8. PubMed ID: 21970569
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Resonant tunneling of surface plasmon polariton in the plasmonic nano-cavity.
    Park J; Kim H; Lee IM; Kim S; Jung J; Lee B
    Opt Express; 2008 Oct; 16(21):16903-15. PubMed ID: 18852798
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nonlinear couplers with tapered plasmonic waveguides.
    Salgueiro JR; Kivshar YS
    Opt Express; 2012 Apr; 20(9):9403-8. PubMed ID: 22535029
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metamaterials for enhanced polarization conversion in plasmonic excitation.
    Feng L; Mizrahi A; Zamek S; Liu Z; Lomakin V; Fainman Y
    ACS Nano; 2011 Jun; 5(6):5100-6. PubMed ID: 21500845
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical bistability in metal gap waveguide nanocavities.
    Shen Y; Wang GP
    Opt Express; 2008 Jun; 16(12):8421-6. PubMed ID: 18545555
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Giant transverse optical forces in nanoscale slot waveguides of hyperbolic metamaterials.
    He Y; He S; Gao J; Yang X
    Opt Express; 2012 Sep; 20(20):22372-82. PubMed ID: 23037385
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiple excitation of localized surface plasmon to create a 10 nm x 10 nm strong optical spot using an Au nanoparticle array-based ridge waveguide.
    Kang SM; Han J; Kim T; Park NC; Park KS; Min BK; Park YP
    Opt Express; 2010 Jan; 18(2):1576-85. PubMed ID: 20173984
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecule-dependent plasmonic enhancement of fluorescence and Raman scattering near realistic nanostructures.
    Kern AM; Meixner AJ; Martin OJ
    ACS Nano; 2012 Nov; 6(11):9828-36. PubMed ID: 23020510
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: using Ag nanoparticles as a plasmonic photocatalyst.
    Wu T; Liu S; Luo Y; Lu W; Wang L; Sun X
    Nanoscale; 2011 May; 3(5):2142-4. PubMed ID: 21451827
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter.
    Hartmann N; Piredda G; Berthelot J; des Francs GC; Bouhelier A; Hartschuh A
    Nano Lett; 2012 Jan; 12(1):177-81. PubMed ID: 22175822
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding.
    Grillet N; Manchon D; Bertorelle F; Bonnet C; Broyer M; Cottancin E; Lermé J; Hillenkamp M; Pellarin M
    ACS Nano; 2011 Dec; 5(12):9450-62. PubMed ID: 22087471
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Probing bright and dark surface-plasmon modes in individual and coupled noble metal nanoparticles using an electron beam.
    Chu MW; Myroshnychenko V; Chen CH; Deng JP; Mou CY; García de Abajo FJ
    Nano Lett; 2009 Jan; 9(1):399-404. PubMed ID: 19063614
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide.
    Lee DJ; Yim HD; Lee SG; O BH
    Opt Express; 2011 Oct; 19(21):19895-900. PubMed ID: 21996997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.