These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 18852736)

  • 61. Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods.
    Li S; Pedano ML; Chang SH; Mirkin CA; Schatz GC
    Nano Lett; 2010 May; 10(5):1722-7. PubMed ID: 20356055
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Multispectral plasmon induced transparency in coupled meta-atoms.
    Artar A; Yanik AA; Altug H
    Nano Lett; 2011 Apr; 11(4):1685-9. PubMed ID: 21438605
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Low-temperature plasmonics of metallic nanostructures.
    Bouillard JS; Dickson W; O'Connor DP; Wurtz GA; Zayats AV
    Nano Lett; 2012 Mar; 12(3):1561-5. PubMed ID: 22339644
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Crystallinity dependence of the plasmon resonant Raman scattering by anisotropic gold nanocrystals.
    Portalès H; Goubet N; Saviot L; Yang P; Sirotkin S; Duval E; Mermet A; Pileni MP
    ACS Nano; 2010 Jun; 4(6):3489-97. PubMed ID: 20565142
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Optical gain, spontaneous and stimulated emission of surface plasmon polaritons in confined plasmonic waveguide.
    Colas des Francs G; Bramant P; Grandidier J; Bouhelier A; Weeber JC; Dereux A
    Opt Express; 2010 Aug; 18(16):16327-34. PubMed ID: 20721019
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Characterization of bending loss in hollow flexible terahertz waveguides.
    Doradla P; Joseph CS; Kumar J; Giles RH
    Opt Express; 2012 Aug; 20(17):19176-84. PubMed ID: 23038558
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons.
    Christensen J; Manjavacas A; Thongrattanasiri S; Koppens FH; de Abajo FJ
    ACS Nano; 2012 Jan; 6(1):431-40. PubMed ID: 22147667
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Coupling of spin and angular momentum of light in plasmonic vortex.
    Cho SW; Park J; Lee SY; Kim H; Lee B
    Opt Express; 2012 Apr; 20(9):10083-94. PubMed ID: 22535099
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Plasmon guided modes in nanoparticle metamaterials.
    Sainidou R; de Abajo GF
    Opt Express; 2008 Mar; 16(7):4499-506. PubMed ID: 18542548
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Plasmonic nanohybrid with ultrasmall Ag nanoparticles and fluorescent dyes.
    Rainò G; Stöferle T; Park C; Kim HC; Topuria T; Rice PM; Chin IJ; Miller RD; Mahrt RF
    ACS Nano; 2011 May; 5(5):3536-41. PubMed ID: 21534536
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Coupling slot-waveguide cavities for large-scale quantum optical devices.
    Su CH; Hiscocks MP; Gibson BC; Greentree AD; Hollenberg LC; Ladouceur F
    Opt Express; 2011 Mar; 19(7):6354-65. PubMed ID: 21451663
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Optical coupling and emission of metal-insulator confined circular resonators.
    Che KJ; Lei MX; Cai ZP
    Opt Express; 2013 Feb; 21(4):4979-85. PubMed ID: 23482030
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Plasmonic properties of polycrystalline hollow Au nanoparticles: a surface roughness effect.
    Huang C; Hao Y
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3701-5. PubMed ID: 21776758
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Trapping light in plasmonic waveguides.
    Park J; Kim KY; Lee IM; Na H; Lee SY; Lee B
    Opt Express; 2010 Jan; 18(2):598-623. PubMed ID: 20173880
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cyclic Sommerfeld resonances in nanorods at grazing incidences.
    Feng S; Halterman K; Overfelt PL; Bowling D
    Opt Express; 2009 Oct; 17(22):19823-41. PubMed ID: 19997204
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Efficient coupling into slow light photonic crystal waveguide without transition region: role of evanescent modes.
    Martijn de Sterke C; Dossou KB; White TP; Botten LC; McPhedran RC
    Opt Express; 2009 Sep; 17(20):17338-43. PubMed ID: 19907519
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Manipulating optical polarization by stereo plasmonic structure.
    Xu J; Li T; Lu FF; Wang SM; Zhu SN
    Opt Express; 2011 Jan; 19(2):748-56. PubMed ID: 21263615
    [TBL] [Abstract][Full Text] [Related]  

  • 78. THz generation from plasmonic nanoparticle arrays.
    Polyushkin DK; Hendry E; Stone EK; Barnes WL
    Nano Lett; 2011 Nov; 11(11):4718-24. PubMed ID: 22007706
    [TBL] [Abstract][Full Text] [Related]  

  • 79. DNA-directed gold nanodimers with tunable sizes and interparticle distances and their surface plasmonic properties.
    Lan X; Chen Z; Liu BJ; Ren B; Henzie J; Wang Q
    Small; 2013 Jul; 9(13):2308-15. PubMed ID: 23401271
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed.
    Zhang S; Bao K; Halas NJ; Xu H; Nordlander P
    Nano Lett; 2011 Apr; 11(4):1657-63. PubMed ID: 21410217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.