These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 18852813)

  • 1. The divided aperture technique for microscopy through scattering media.
    Sheppard CJ; Gong W; Si K
    Opt Express; 2008 Oct; 16(21):17031-8. PubMed ID: 18852813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focal modulation microscopy.
    Chen N; Wong CH; Sheppard CJ
    Opt Express; 2008 Nov; 16(23):18764-9. PubMed ID: 19581963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of axial resolution in a confocal microscope with D-shaped apertures.
    Gong W; Si K; Sheppard CJ
    Appl Opt; 2009 Jul; 48(20):3998-4002. PubMed ID: 19593353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shaped focal plane detectors for particle concentration and mean size observations.
    Agrawal YC; Mikkelsen OA
    Opt Express; 2009 Dec; 17(25):23066-77. PubMed ID: 20052233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rigorous theory on elliptical mirror focusing for point scanning microscopy.
    Liu J; Tan J; Wilson T; Zhong C
    Opt Express; 2012 Mar; 20(6):6175-84. PubMed ID: 22418498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confocal light scattering spectroscopic imaging system for in situ tissue characterization.
    Huang P; Hunter M; Georgakoudi I
    Appl Opt; 2009 May; 48(13):2595-9. PubMed ID: 19412220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison between optical-resolution photoacoustic microscopy and confocal laser scanning microscopy for turbid sample imaging.
    U-Thainual P; Kim DH
    J Biomed Opt; 2015 Dec; 20(12):121202. PubMed ID: 26256640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divided-aperture technique for fluorescence confocal microscopy through scattering media.
    Gong W; Si K; Sheppard CJ
    Appl Opt; 2010 Feb; 49(4):752-7. PubMed ID: 20119030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging beyond the ballistic limit in coherence imaging using multiply scattered light.
    Giacomelli MG; Wax A
    Opt Express; 2011 Feb; 19(5):4268-79. PubMed ID: 21369257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field enhancement in a circular aperture surrounded by a single channel groove.
    Bonod N; Popov E; GĂ©rard D; Wenger J; Rigneault H
    Opt Express; 2008 Feb; 16(3):2276-87. PubMed ID: 18542307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical resolution below lambda/4 using synthetic aperture microscopy and evanescent-wave illumination.
    Neumann A; Kuznetsova Y; Brueck SR
    Opt Express; 2008 Dec; 16(25):20477-83. PubMed ID: 19065186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous measurement of in-plane and out-of-plane displacement fields in scattering media using phase-contrast spectral optical coherence tomography.
    De la Torre Ibarra MH; Ruiz PD; Huntley JM
    Opt Lett; 2009 Mar; 34(6):806-8. PubMed ID: 19282939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon leakage radiation microscopy at the diffraction limit.
    Hohenau A; Krenn JR; Drezet A; Mollet O; Huant S; Genet C; Stein B; Ebbesen TW
    Opt Express; 2011 Dec; 19(25):25749-62. PubMed ID: 22273967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super-resolution in digital holography by a two-dimensional dynamic phase grating.
    Paturzo M; Merola F; Grilli S; De Nicola S; Finizio A; Ferraro P
    Opt Express; 2008 Oct; 16(21):17107-18. PubMed ID: 18852822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture.
    Liu JT; Mandella MJ; Crawford JM; Contag CH; Wang TD; Kino GS
    J Biomed Opt; 2008; 13(3):034020. PubMed ID: 18601565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoacoustic technique for assessing optical scattering properties of turbid media.
    Ranasinghesagara JC; Jian Y; Chen X; Mathewson K; Zemp RJ
    J Biomed Opt; 2009; 14(4):040504. PubMed ID: 19725709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of depth dependent spherical aberrations in 3D structured illumination microscopy.
    Arigovindan M; Sedat JW; Agard DA
    Opt Express; 2012 Mar; 20(6):6527-41. PubMed ID: 22418536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confocal light absorption and scattering spectroscopic microscopy.
    Fang H; Qiu L; Vitkin E; Zaman MM; Andersson C; Salahuddin S; Kimerer LM; Cipolloni PB; Modell MD; Turner BS; Keates SE; Bigio I; Itzkan I; Freedman SD; Bansil R; Hanlon EB; Perelman LT
    Appl Opt; 2007 Apr; 46(10):1760-9. PubMed ID: 17356619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial.
    Wang W; Xing H; Fang L; Liu Y; Ma J; Lin L; Wang C; Luo X
    Opt Express; 2008 Dec; 16(25):21142-8. PubMed ID: 19065254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-reversal and model-based imaging in a THz waveguide.
    Musheinesh MA; Divin CJ; Fessler JA; Norris TB
    Opt Express; 2009 Aug; 17(16):13663-70. PubMed ID: 19654774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.