These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 18853810)

  • 41. Development of a new Cr(VI)-biosorbent from agricultural biowaste.
    Park D; Lim SR; Yun YS; Park JM
    Bioresour Technol; 2008 Dec; 99(18):8810-8. PubMed ID: 18511265
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects.
    Ellis AS; Johnson TM; Bullen TD
    Environ Sci Technol; 2004 Jul; 38(13):3604-7. PubMed ID: 15296311
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chromium transport, oxidation, and adsorption in manganese-coated sand.
    Guha H; Saiers JE; Brooks S; Jardine P; Jayachandran K
    J Contam Hydrol; 2001 Jun; 49(3-4):311-34. PubMed ID: 11411402
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with alpha-OH.
    Sun J; Mao JD; Gong H; Lan Y
    J Hazard Mater; 2009 Sep; 168(2-3):1569-74. PubMed ID: 19372002
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H(3)PO(4) mixed with Fe/Al/Mn activation.
    Sun Y; Yue Q; Mao Y; Gao B; Gao Y; Huang L
    J Hazard Mater; 2014 Jan; 265():191-200. PubMed ID: 24361798
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling of boldine alkaloid adsorption onto pure and propyl-sulfonic acid-modified mesoporous silicas. A comparative study.
    Geszke-Moritz M; Moritz M
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():815-30. PubMed ID: 27612776
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adsorption of Cr(VI) using silica-based adsorbent prepared by radiation-induced grafting.
    Qiu J; Wang Z; Li H; Xu L; Peng J; Zhai M; Yang C; Li J; Wei G
    J Hazard Mater; 2009 Jul; 166(1):270-6. PubMed ID: 19117674
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient enrichment of glycopeptides with sulfonic acid-functionalized mesoporous silica.
    Bibi A; Ju H
    Talanta; 2016 Dec; 161():681-685. PubMed ID: 27769465
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium.
    Jung Y; Choi J; Lee W
    Chemosphere; 2007 Aug; 68(10):1968-75. PubMed ID: 17400277
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hexavalent chromium removal mechanism using conducting polymers.
    Krishnani KK; Srinives S; Mohapatra BC; Boddu VM; Hao J; Meng X; Mulchandani A
    J Hazard Mater; 2013 May; 252-253():99-106. PubMed ID: 23507365
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions.
    Ashraf A; Bibi I; Niazi NK; Ok YS; Murtaza G; Shahid M; Kunhikrishnan A; Li D; Mahmood T
    Int J Phytoremediation; 2017 Jul; 19(7):605-613. PubMed ID: 27849143
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism of hexavalent chromium adsorption by persimmon tannin gel.
    Nakajima A; Baba Y
    Water Res; 2004 Jul; 38(12):2859-64. PubMed ID: 15223280
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reduction and removal of Cr(VI) from aqueous solutions using modified byproducts of beer production.
    Cui H; Fu M; Yu S; Wang MK
    J Hazard Mater; 2011 Feb; 186(2-3):1625-31. PubMed ID: 21215518
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reduction of hexavalent chromium with the brown seaweed Ecklonia biomass.
    Park D; Yun YS; Park JM
    Environ Sci Technol; 2004 Sep; 38(18):4860-4. PubMed ID: 15487797
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution.
    Petala E; Dimos K; Douvalis A; Bakas T; Tucek J; Zboƙil R; Karakassides MA
    J Hazard Mater; 2013 Oct; 261():295-306. PubMed ID: 23959249
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Speciation and separation of Cr(VI) and Cr(III) using coprecipitation with Ni2+/2-Nitroso-1-naphthol-4-sulfonic acid and determination by FAAS in water and food samples.
    Uluozlu OD; Tuzen M; Soylak M
    Food Chem Toxicol; 2009 Oct; 47(10):2601-5. PubMed ID: 19632291
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Preconcentration and separation of Cr(III) and Cr(VI) using sawdust as a sorbent.
    Memon SQ; Bhanger MI; Khuhawar MY
    Anal Bioanal Chem; 2005 Oct; 383(4):619-24. PubMed ID: 16184363
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chromium species behaviour in the activated sludge process.
    Stasinakis AS; Thomaidis NS; Mamais D; Karivali M; Lekkas TD
    Chemosphere; 2003 Aug; 52(6):1059-67. PubMed ID: 12781239
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Removal of chromium ions from [corrected] aqueous solutions by adsorption on activated carbon and char.
    Di Natale F; Lancia A; Molino A; Musmarra D
    J Hazard Mater; 2007 Jul; 145(3):381-90. PubMed ID: 17169486
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of different functional groups in a novel adsorption-complexation-reduction multi-step kinetic model for hexavalent chromium retention by undissolved humic acid.
    Zhang J; Yin H; Chen L; Liu F; Chen H
    Environ Pollut; 2018 Jun; 237():740-746. PubMed ID: 29126567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.