These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18853819)

  • 1. Process for capturing CO2 arising from the calcination of the CaCO3 used in cement manufacture.
    Rodríguez N; Alonso M; Grasa G; Abanades JC
    Environ Sci Technol; 2008 Sep; 42(18):6980-4. PubMed ID: 18853819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost structure of a postcombustion CO2 capture system using CaO.
    Abanades JC; Grasa G; Alonso M; Rodriguez N; Anthony EJ; Romeo LM
    Environ Sci Technol; 2007 Aug; 41(15):5523-7. PubMed ID: 17822127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic transformation of limestone during calcination under CO2.
    Valverde JM; Medina S
    Phys Chem Chem Phys; 2015 Sep; 17(34):21912-26. PubMed ID: 26235797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Operation of a 25 KWth Calcium Looping Pilot-plant with High Oxygen Concentrations in the Calciner.
    Erans M; Jeremias M; Manovic V; Anthony EJ
    J Vis Exp; 2017 Oct; (128):. PubMed ID: 29155774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO₂ capture from cement plants using oxyfired precalcination and/or calcium looping.
    Rodríguez N; Murillo R; Abanades JC
    Environ Sci Technol; 2012 Feb; 46(4):2460-6. PubMed ID: 22242605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluidized bed combustion systems integrating CO2 capture with CaO.
    Abanades JC; Anthony EJ; Wang J; Oakey JE
    Environ Sci Technol; 2005 Apr; 39(8):2861-6. PubMed ID: 15884387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrified externally heated rotary calciner for calcination of cement raw meal.
    Jacob RM; Pinheiro JP; Tokheim LA
    Heliyon; 2023 Nov; 9(11):e22023. PubMed ID: 38027667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond carbon capture towards resource recovery and utilization: fluidized-bed homogeneous granulation of calcium carbonate from captured CO
    Huang YH; Garcia-Segura S; de Luna MDG; Sioson AS; Lu MC
    Chemosphere; 2020 Jul; 250():126325. PubMed ID: 32234625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pelletization and addition of steam on the cyclic performance of carbon-templated, CaO-based CO2 sorbents.
    Broda M; Manovic V; Anthony EJ; Müller CR
    Environ Sci Technol; 2014 May; 48(9):5322-8. PubMed ID: 24678727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of repeated steam hydration reactivation on CaO-based sorbents for CO2 capture.
    Materić BV; Sheppard C; Smedley SI
    Environ Sci Technol; 2010 Dec; 44(24):9496-501. PubMed ID: 21114320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CaO-based pellets supported by calcium aluminate cements for high-temperature CO2 capture.
    Manovic V; Anthony EJ
    Environ Sci Technol; 2009 Sep; 43(18):7117-22. PubMed ID: 19806751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relevant influence of limestone crystallinity on CO₂ capture in the Ca-looping technology at realistic calcination conditions.
    Valverde JM; Sanchez-Jimenez PE; Perez-Maqueda LA
    Environ Sci Technol; 2014 Aug; 48(16):9882-9. PubMed ID: 25029532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spray water reactivation/pelletization of spent CaO-based sorbent from calcium looping cycles.
    Manovic V; Wu Y; He I; Anthony EJ
    Environ Sci Technol; 2012 Nov; 46(22):12720-5. PubMed ID: 23088430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal decomposition kinetics of Brazilian limestones: effect of CO2 partial pressure.
    Avila I; Crnkovic PM; Milioli FE; Luo KH
    Environ Technol; 2012 Jun; 33(10-12):1175-82. PubMed ID: 22856287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Steel-Slag-Based, Iron-Functionalized Sorbent for an Autothermal Carbon Dioxide Capture Process.
    Tian S; Jiang J; Hosseini D; Kierzkowska AM; Imtiaz Q; Broda M; Müller CR
    ChemSusChem; 2015 Nov; 8(22):3839-46. PubMed ID: 26616682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combustion of an oil palm residue with elevated potassium content in a fluidized-bed combustor using alternative bed materials for preventing bed agglomeration.
    Ninduangdee P; Kuprianov VI
    Bioresour Technol; 2015 Apr; 182():272-281. PubMed ID: 25704101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineral sequestration of CO(2) by aqueous carbonation of coal combustion fly-ash.
    Montes-Hernandez G; Pérez-López R; Renard F; Nieto JM; Charlet L
    J Hazard Mater; 2009 Jan; 161(2-3):1347-54. PubMed ID: 18539389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward electrochemical synthesis of cement-An electrolyzer-based process for decarbonating CaCO
    Ellis LD; Badel AF; Chiang ML; Park RJ; Chiang YM
    Proc Natl Acad Sci U S A; 2020 Jun; 117(23):12584-12591. PubMed ID: 31527245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles.
    Manovic V; Anthony EJ
    Environ Sci Technol; 2007 Feb; 41(4):1420-5. PubMed ID: 17593751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnesian calcite sorbent for carbon dioxide capture.
    Mabry JC; Mondal K
    Environ Technol; 2011 Jan; 32(1-2):55-67. PubMed ID: 21473269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.