These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
532 related articles for article (PubMed ID: 18854009)
1. The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules. Rückert C; Milse J; Albersmeier A; Koch DJ; Pühler A; Kalinowski J BMC Genomics; 2008 Oct; 9():483. PubMed ID: 18854009 [TBL] [Abstract][Full Text] [Related]
2. The transcriptional regulator SsuR activates expression of the Corynebacterium glutamicum sulphonate utilization genes in the absence of sulphate. Koch DJ; Rückert C; Albersmeier A; Hüser AT; Tauch A; Pühler A; Kalinowski J Mol Microbiol; 2005 Oct; 58(2):480-94. PubMed ID: 16194234 [TBL] [Abstract][Full Text] [Related]
3. Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. Rückert C; Koch DJ; Rey DA; Albersmeier A; Mormann S; Pühler A; Kalinowski J BMC Genomics; 2005 Sep; 6():121. PubMed ID: 16159395 [TBL] [Abstract][Full Text] [Related]
4. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum. Brune I; Werner H; Hüser AT; Kalinowski J; Pühler A; Tauch A BMC Genomics; 2006 Feb; 7():21. PubMed ID: 16469103 [TBL] [Abstract][Full Text] [Related]
5. The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Rey DA; Nentwich SS; Koch DJ; Rückert C; Pühler A; Tauch A; Kalinowski J Mol Microbiol; 2005 May; 56(4):871-87. PubMed ID: 15853877 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional response of Corynebacterium glutamicum ATCC 13032 to hydrogen peroxide stress and characterization of the OxyR regulon. Milse J; Petri K; Rückert C; Kalinowski J J Biotechnol; 2014 Nov; 190():40-54. PubMed ID: 25107507 [TBL] [Abstract][Full Text] [Related]
7. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. Kohl TA; Baumbach J; Jungwirth B; Pühler A; Tauch A J Biotechnol; 2008 Jul; 135(4):340-50. PubMed ID: 18573287 [TBL] [Abstract][Full Text] [Related]
8. The Zur regulon of Corynebacterium glutamicum ATCC 13032. Schröder J; Jochmann N; Rodionov DA; Tauch A BMC Genomics; 2010 Jan; 11():12. PubMed ID: 20055984 [TBL] [Abstract][Full Text] [Related]
10. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. Kohl TA; Tauch A J Biotechnol; 2009 Sep; 143(4):239-46. PubMed ID: 19665500 [TBL] [Abstract][Full Text] [Related]
11. Negative transcriptional control of biotin metabolism genes by the TetR-type regulator BioQ in biotin-auxotrophic Corynebacterium glutamicum ATCC 13032. Brune I; Götker S; Schneider J; Rodionov DA; Tauch A J Biotechnol; 2012 Jun; 159(3):225-34. PubMed ID: 22178235 [TBL] [Abstract][Full Text] [Related]
12. The transcriptional activator ClgR controls transcription of genes involved in proteolysis and DNA repair in Corynebacterium glutamicum. Engels S; Ludwig C; Schweitzer JE; Mack C; Bott M; Schaffer S Mol Microbiol; 2005 Jul; 57(2):576-91. PubMed ID: 15978086 [TBL] [Abstract][Full Text] [Related]
13. Global gene expression during stringent response in Corynebacterium glutamicum in presence and absence of the rel gene encoding (p)ppGpp synthase. Brockmann-Gretza O; Kalinowski J BMC Genomics; 2006 Sep; 7():230. PubMed ID: 16961923 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional regulation of Corynebacterium glutamicum methionine biosynthesis genes in response to methionine supplementation under oxygen deprivation. Suda M; Teramoto H; Imamiya T; Inui M; Yukawa H Appl Microbiol Biotechnol; 2008 Dec; 81(3):505-13. PubMed ID: 18800184 [TBL] [Abstract][Full Text] [Related]
15. clpC and clpP1P2 gene expression in Corynebacterium glutamicum is controlled by a regulatory network involving the transcriptional regulators ClgR and HspR as well as the ECF sigma factor sigmaH. Engels S; Schweitzer JE; Ludwig C; Bott M; Schaffer S Mol Microbiol; 2004 Apr; 52(1):285-302. PubMed ID: 15049827 [TBL] [Abstract][Full Text] [Related]
16. OxyR acts as a transcriptional repressor of hydrogen peroxide-inducible antioxidant genes in Corynebacterium glutamicum R. Teramoto H; Inui M; Yukawa H FEBS J; 2013 Jul; 280(14):3298-312. PubMed ID: 23621709 [TBL] [Abstract][Full Text] [Related]
17. AraR, an l-Arabinose-Responsive Transcriptional Regulator in Corynebacterium glutamicum ATCC 31831, Exerts Different Degrees of Repression Depending on the Location of Its Binding Sites within the Three Target Promoter Regions. Kuge T; Teramoto H; Inui M J Bacteriol; 2015 Dec; 197(24):3788-96. PubMed ID: 26416832 [TBL] [Abstract][Full Text] [Related]
18. Regulation of AmtR-controlled gene expression in Corynebacterium glutamicum: mechanism and characterization of the AmtR regulon. Beckers G; Strösser J; Hildebrandt U; Kalinowski J; Farwick M; Krämer R; Burkovski A Mol Microbiol; 2005 Oct; 58(2):580-95. PubMed ID: 16194241 [TBL] [Abstract][Full Text] [Related]
19. Identification of RamA, a novel LuxR-type transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. Cramer A; Gerstmeir R; Schaffer S; Bott M; Eikmanns BJ J Bacteriol; 2006 Apr; 188(7):2554-67. PubMed ID: 16547043 [TBL] [Abstract][Full Text] [Related]
20. Target genes and DNA-binding sites of the response regulator PhoR from Corynebacterium glutamicum. Schaaf S; Bott M J Bacteriol; 2007 Jul; 189(14):5002-11. PubMed ID: 17496102 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]