BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 18854127)

  • 1. Fabrication of a layered microstructured polycaprolactone construct for 3-D tissue engineering.
    Sarkar S; Isenberg BC; Hodis E; Leach JB; Desai TA; Wong JY
    J Biomater Sci Polym Ed; 2008; 19(10):1347-62. PubMed ID: 18854127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ECM-based triple layered scaffolds for vascular tissue engineering.
    Grandi C; Martorina F; Lora S; Dalzoppo D; Amistà P; Sartore L; Di Liddo R; Conconi MT; Parnigotto PP
    Int J Mol Med; 2011 Dec; 28(6):947-52. PubMed ID: 21837361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo osteogenic differentiation of rat bone marrow stromal cells in thermosensitive MPEG-PCL diblock copolymer gels.
    Kim MS; Kim SK; Kim SH; Hyun H; Khang G; Lee HB
    Tissue Eng; 2006 Oct; 12(10):2863-73. PubMed ID: 17518655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications.
    Guan J; Fujimoto KL; Sacks MS; Wagner WR
    Biomaterials; 2005 Jun; 26(18):3961-71. PubMed ID: 15626443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM
    J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of polycaprolactone-polyethylene glycol methyl ether and polycaprolactone-chitosan electrospun mats potential for vascular tissue engineering.
    Sultana T; Amirian J; Park C; Lee SJ; Lee BT
    J Biomater Appl; 2017 Nov; 32(5):648-662. PubMed ID: 28956678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering.
    Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W
    Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of two-step grafting to fabricate dual-functional films and site-specific functionalized scaffolds.
    Luk JZ; Cork J; Cooper-White J; Grøndahl L
    Langmuir; 2015 Feb; 31(5):1746-54. PubMed ID: 25598325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilayered scaffold for engineering cellularized blood vessels.
    Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ
    Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer powder processing of cryomilled polycaprolactone for solvent-free generation of homogeneous bioactive tissue engineering scaffolds.
    Lim J; Chong MS; Chan JK; Teoh SH
    Small; 2014 Jun; 10(12):2495-502. PubMed ID: 24740849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of UV cross-linked gelatin coated electrospun poly(caprolactone) fibrous scaffolds for tissue engineering.
    Correia TR; Ferreira P; Vaz R; Alves P; Figueiredo MM; Correia IJ; Coimbra P
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1539-1548. PubMed ID: 27185071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterned melt electrospun substrates for tissue engineering.
    Dalton PD; Joergensen NT; Groll J; Moeller M
    Biomed Mater; 2008 Sep; 3(3):034109. PubMed ID: 18689917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.
    Arcaute K; Mann B; Wicker R
    Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds.
    Jiang CP; Chen YY; Hsieh MF; Lee HM
    Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering.
    Gautam S; Chou CF; Dinda AK; Potdar PD; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():402-9. PubMed ID: 24268275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of cellular proliferation on dense and porous PCL scaffolds.
    Saşmazel HT; Gümüşderelioğlu M; Gürpinar A; Onur MA
    Biomed Mater Eng; 2008; 18(3):119-28. PubMed ID: 18725692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.