These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 1885439)

  • 41. Effects of dimethylthiourea on chronic hypoxia-induced pulmonary arterial remodelling and ventricular hypertrophy in rats.
    Langleben D; Fox RB; Jones RC; Reid LM
    Clin Invest Med; 1989 Aug; 12(4):235-40. PubMed ID: 2535591
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of hypobaric hypoxia in infancy on the subsequent development of vasoconstrictive pulmonary vascular disease in the Wistar albino rat.
    Caslin A; Heath D; Smith P
    J Pathol; 1991 Feb; 163(2):133-41. PubMed ID: 1901909
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Expression and activity of RhoA/Rho kinase in remodeling of high blood flow pulmonary vessels.].
    Li FH; Xia W; Sun RP
    Zhonghua Er Ke Za Zhi; 2007 May; 45(5):387-92. PubMed ID: 17697629
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fine structural alterations of bovine peripheral pulmonary arteries in hypoxia-induced hypertension.
    Jaenke RS; Alexander AF
    Am J Pathol; 1973 Nov; 73(2):377-98. PubMed ID: 4357176
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reduction of chronic hypoxic pulmonary hypertension in the rat by an inhibitor of collagen production.
    Kerr JS; Ruppert CL; Tozzi CA; Neubauer JA; Frankel HM; Yu SY; Riley DJ
    Am Rev Respir Dis; 1987 Feb; 135(2):300-6. PubMed ID: 3813190
    [TBL] [Abstract][Full Text] [Related]  

  • 46. BAY 41-2272, a direct activator of soluble guanylate cyclase, reduces right ventricular hypertrophy and prevents pulmonary vascular remodeling during chronic hypoxia in neonatal rats.
    Deruelle P; Balasubramaniam V; Kunig AM; Seedorf GJ; Markham NE; Abman SH
    Biol Neonate; 2006; 90(2):135-44. PubMed ID: 16582538
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Autoradiographic analysis of cell proliferation and protein synthesis in the pulmonary trunk of rats during the early development of hypoxia-induced pulmonary hypertension.
    McKenzie JC; Clancy J; Klein RM
    Blood Vessels; 1984; 21(2):80-9. PubMed ID: 6230123
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Structural changes of extra pulmonary artery and pulmonary arterioles of rats during chronic hypoxia and their significance].
    Song W; Cai Y; Deng X; Gong Y; Dong G
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 1995 Jun; 17(3):197-203. PubMed ID: 8706155
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphodiesterase type 5 as a target for the treatment of hypoxia-induced pulmonary hypertension.
    Sebkhi A; Strange JW; Phillips SC; Wharton J; Wilkins MR
    Circulation; 2003 Jul; 107(25):3230-5. PubMed ID: 12796132
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impairment of hypoxic pulmonary artery remodeling by heparin in mice.
    Hales CA; Kradin RL; Brandstetter RD; Zhu YJ
    Am Rev Respir Dis; 1983 Oct; 128(4):747-51. PubMed ID: 6226226
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Changes in the pulmonary arteries of the rat during recovery from hypoxia-induced pulmonary hypertension.
    Hislop A; Reid L
    Br J Exp Pathol; 1977 Dec; 58(6):653-62. PubMed ID: 147098
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expression of BK(Ca) channels in human pulmonary arteries: relationship with remodeling and hypoxic pulmonary vasoconstriction.
    Peinado VI; París R; Ramírez J; Roca J; Rodriguez-Roisin R; Barberà JA
    Vascul Pharmacol; 2008; 49(4-6):178-84. PubMed ID: 18723123
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional and structural changes with hypoxia in pulmonary circulation of spontaneously hypertensive rats.
    Janssens SP; Thompson BT; Spence CR; Hales CA
    J Appl Physiol (1985); 1994 Sep; 77(3):1101-7. PubMed ID: 7836110
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pulmonary artery structural changes in two colonies of rats with different sensitivity to chronic hypoxia.
    Langleben D; Jones RC; Aronovitz MJ; Hill NS; Ou LC; Reid LM
    Am J Pathol; 1987 Jul; 128(1):61-6. PubMed ID: 3605313
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Morphometric investigation on hypoxic structural remodeling of intraacinar pulmonary arteries].
    Xi S; Ruan Y; Liu Y
    Zhonghua Jie He He Hu Xi Za Zhi; 1998 May; 21(5):303-5. PubMed ID: 11326958
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The pathobiology of pulmonary hypertension. Smooth muscle cells and ion channels.
    Michelakis ED; Weir EK
    Clin Chest Med; 2001 Sep; 22(3):419-32. PubMed ID: 11590838
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alterations in structure of elastic laminae of rat pulmonary arteries in hypoxic hypertension.
    Liu SQ
    J Appl Physiol (1985); 1996 Nov; 81(5):2147-55. PubMed ID: 8941540
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nitric oxide synthase mRNA expression and localization in pulmonary artery of hypoxic pulmonary hypertensive rats.
    Du J; Qi J; Zhao B; Li W
    Chin Med Sci J; 1999 Sep; 14(3):184. PubMed ID: 12903823
    [No Abstract]   [Full Text] [Related]  

  • 59. [Protective and therapeutic effect of apelin on chronic hypoxic pulmonary hypertension in rats].
    Fan XF; Wang Q; Mao SZ; Hu LG; Hong L; Tian LX; Gao YQ; Gong YS
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2010 Feb; 26(1):9-12. PubMed ID: 20476553
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Contribution of individual structural components in determining the zero-stress state in small arteries.
    Zeller PJ; Skalak TC
    J Vasc Res; 1998; 35(1):8-17. PubMed ID: 9482691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.