These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 18854613)

  • 1. Simple analytical expressions for the dose of point photon sources in homogeneous media.
    Sabariego MP; Porras I; Lallena AM
    Phys Med Biol; 2008 Nov; 53(21):6113-28. PubMed ID: 18854613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doppler broadening effect on low-energy photon dose calculations using MCNP5 and PENELOPE.
    Ye SJ; Ove R; Naqvi SA
    Health Phys; 2006 Oct; 91(4):361-6. PubMed ID: 16966879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of specific absorbed fractions from internal photon sources in ORNL analytical adult phantom.
    Hakimabad HM; Motavalli LR
    Radiat Prot Dosimetry; 2008; 128(4):427-31. PubMed ID: 17951243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of photon energy spectra from Varian 2100C and 2300C/D Linacs: simplified estimates with PENELOPE Monte Carlo models.
    Baumgartner A; Steurer A; Maringer FJ
    Appl Radiat Isot; 2009 Nov; 67(11):2007-12. PubMed ID: 19692253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of transverse magnetic fields on dose distribution and RBE of photon beams: comparing PENELOPE and EGS4 Monte Carlo codes.
    Nettelbeck H; Takacs GJ; Rosenfeld AB
    Phys Med Biol; 2008 Sep; 53(18):5123-37. PubMed ID: 18723929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MANTIS: combined x-ray, electron and optical Monte Carlo simulations of indirect radiation imaging systems.
    Badano A; Sempau J
    Phys Med Biol; 2006 Mar; 51(6):1545-61. PubMed ID: 16510962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PENLINAC: extending the capabilities of the Monte Carlo code PENELOPE for the simulation of therapeutic beams.
    Rodríguez ML
    Phys Med Biol; 2008 Sep; 53(17):4573-93. PubMed ID: 18678929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Monte Carlo study of the variation of electron fluence in water from a 6 MV photon beam outside of the field.
    Kirkby C; Field C; MacKenzie M; Syme A; Fallone BG
    Phys Med Biol; 2007 Jun; 52(12):3563-78. PubMed ID: 17664560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photon and electron absorbed fractions calculated from a new tomographic rat model.
    Peixoto PH; Vieira JW; Yoriyaz H; Lima FR
    Phys Med Biol; 2008 Oct; 53(19):5343-55. PubMed ID: 18758003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo calculations of spectra and interaction probabilities for photons in liquid scintillators for use in the standardization of radionuclides.
    Zimmerman BE
    Appl Radiat Isot; 2006; 64(10-11):1492-8. PubMed ID: 16567098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling energy deposition in trabecular spongiosa using the Monte Carlo code PENELOPE.
    Gersh JA; Dingfelder M; Toburen LH
    Health Phys; 2007 Jul; 93(1):47-59. PubMed ID: 17563492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of photon dose generated by a short pulse high power laser.
    Hayashi Y; Fukumi A; Matsukado K; Mori M; Kotaki H; Kando M; Chen LM; Daito I; Kondo S; Kanazawa S; Yamazaki A; Ogura K; Nishiuchi M; Kado M; Sagisaka A; Nakamura S; Li Z; Orimo S; Homma T; Daido H
    Radiat Prot Dosimetry; 2006; 121(2):99-107. PubMed ID: 16410288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical models, cross sections, and numerical approximations used in MCNP and GEANT4 Monte Carlo codes for photon and electron absorbed fraction calculation.
    Yoriyaz H; Moralles M; Siqueira Pde T; Guimarães Cda C; Cintra FB; dos Santos A
    Med Phys; 2009 Nov; 36(11):5198-213. PubMed ID: 19994530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of the photon dose calculation model in the VARSKIN 4 skin dose computer code.
    Sherbini S; Decicco J; Struckmeyer R; Saba M; Bush-Goddard S
    Health Phys; 2012 Dec; 103(6):763-9. PubMed ID: 23111523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulation of photon scattering in biological tissue models.
    Kumar D; Chacko S; Singh M
    Indian J Biochem Biophys; 1999 Oct; 36(5):330-6. PubMed ID: 10844984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation.
    España S; Herraiz JL; Vicente E; Vaquero JJ; Desco M; Udias JM
    Phys Med Biol; 2009 Mar; 54(6):1723-42. PubMed ID: 19242053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of dose deposition in stereotactic synchrotron radiation therapy: a fast approach combining Monte Carlo and deterministic algorithms.
    Smekens F; Freud N; Létang JM; Adam JF; Ferrero C; Elleaume H; Bravin A; Estève F; Babot D
    Phys Med Biol; 2009 Aug; 54(15):4671-85. PubMed ID: 19590114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of the Monte Carlo code for modeling of photon migration in tissue.
    Zołek NS; Liebert A; Maniewski R
    Comput Methods Programs Biomed; 2006 Oct; 84(1):50-7. PubMed ID: 16962201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dose conversion coefficients based on the Chinese mathematical phantom and MCNP code for external photon irradiation.
    Qiu R; Li J; Zhang Z; Liu L; Bi L; Ren L
    Radiat Prot Dosimetry; 2009 Feb; 134(1):3-12. PubMed ID: 19376886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between PENELOPE and electron Monte Carlo simulations of electron fields used in the treatment of conjunctival lymphoma.
    Brualla L; Palanco-Zamora R; Wittig A; Sempau J; Sauerwein W
    Phys Med Biol; 2009 Sep; 54(18):5469-81. PubMed ID: 19706962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.