These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18854669)

  • 1. Effects of prosthetic gait training for stroke patients to induce use of the paretic leg: a report of three cases.
    Hase K; Fujiwara T; Tsuji T; Liu M
    Keio J Med; 2008 Sep; 57(3):162-7. PubMed ID: 18854669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking.
    Turns LJ; Neptune RR; Kautz SA
    Arch Phys Med Rehabil; 2007 Sep; 88(9):1127-35. PubMed ID: 17826457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of therapeutic gait training using a prosthesis and a treadmill for ambulatory patients with hemiparesis.
    Hase K; Suzuki E; Matsumoto M; Fujiwara T; Liu M
    Arch Phys Med Rehabil; 2011 Dec; 92(12):1961-6. PubMed ID: 22133242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke.
    Genthe K; Schenck C; Eicholtz S; Zajac-Cox L; Wolf S; Kesar TM
    Top Stroke Rehabil; 2018 Apr; 25(3):186-193. PubMed ID: 29457532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review.
    Roelker SA; Bowden MG; Kautz SA; Neptune RR
    Gait Posture; 2019 Feb; 68():6-14. PubMed ID: 30408710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of unilateral real-time biofeedback on propulsive forces during gait.
    Schenck C; Kesar TM
    J Neuroeng Rehabil; 2017 Jun; 14(1):52. PubMed ID: 28583196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking.
    Bowden MG; Balasubramanian CK; Neptune RR; Kautz SA
    Stroke; 2006 Mar; 37(3):872-6. PubMed ID: 16456121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying a pelvic corrective force induces forced use of the paretic leg and improves paretic leg EMG activities of individuals post-stroke during treadmill walking.
    Hsu CJ; Kim J; Tang R; Roth EJ; Rymer WZ; Wu M
    Clin Neurophysiol; 2017 Oct; 128(10):1915-1922. PubMed ID: 28826022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The kinematics of paretic lower limb in aquatic gait with equipment in people with post-stroke hemiparesis.
    Pereira JA; de Souza KK; Pereira SM; Ruschel C; Hubert M; Michaelsen SM
    Clin Biomech (Bristol, Avon); 2019 Dec; 70():16-22. PubMed ID: 31382199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of treadmill training with load addition on non-paretic lower limb on gait parameters after stroke: A randomized controlled clinical trial.
    Ribeiro TS; Silva EMGS; Silva IAP; Costa MFP; Cavalcanti FAC; Lindquist AR
    Gait Posture; 2017 May; 54():229-235. PubMed ID: 28351743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis.
    Balasubramanian CK; Bowden MG; Neptune RR; Kautz SA
    Arch Phys Med Rehabil; 2007 Jan; 88(1):43-9. PubMed ID: 17207674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Presence of a Paretic Propulsion Reserve During Gait in Individuals Following Stroke.
    Lewek MD; Raiti C; Doty A
    Neurorehabil Neural Repair; 2018 Dec; 32(12):1011-1019. PubMed ID: 30558525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Locomotor Adaptability Task Promotes Intense and Task-Appropriate Output From the Paretic Leg During Walking.
    Clark DJ; Neptune RR; Behrman AL; Kautz SA
    Arch Phys Med Rehabil; 2016 Mar; 97(3):493-6. PubMed ID: 26525528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forward propulsion asymmetry is indicative of changes in plantarflexor coordination during walking in individuals with post-stroke hemiparesis.
    Allen JL; Kautz SA; Neptune RR
    Clin Biomech (Bristol, Avon); 2014 Aug; 29(7):780-6. PubMed ID: 24973825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of loading the unaffected limb for one session of locomotor training on laboratory measures of gait in stroke.
    Regnaux JP; Pradon D; Roche N; Robertson J; Bussel B; Dobkin B
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):762-8. PubMed ID: 18325646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of walking with loads above the ankle on gait parameters of persons with hemiparesis after stroke.
    Duclos C; Nadeau S; Bourgeois N; Bouyer L; Richards CL
    Clin Biomech (Bristol, Avon); 2014 Mar; 29(3):265-71. PubMed ID: 24405568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial body weight support treadmill training speed influences paretic and non-paretic leg muscle activation, stride characteristics, and ratings of perceived exertion during acute stroke rehabilitation.
    Burnfield JM; Buster TW; Goldman AJ; Corbridge LM; Harper-Hanigan K
    Hum Mov Sci; 2016 Jun; 47():16-28. PubMed ID: 26845732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted Pelvic Constraint Force Induces Enhanced Use of the Paretic Leg During Walking in Persons Post-Stroke.
    Park SH; Lin JT; Dee W; Hsu CJ; Roth EJ; Rymer WZ; Wu M
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2184-2193. PubMed ID: 32816677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined Visual Feedback with Pelvic Assistance Force Improves Step Length during treadmill walking in Individuals with Post-Stroke Hemiparesis.
    Hsu CJ; Kim J; Wu M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2333-2336. PubMed ID: 30440874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overground walking with a constraint force on the nonparetic leg during swing improves weight shift toward the paretic side in people after stroke.
    Park SH; Yan S; Dee W; Keefer R; Roth EJ; Rymer WZ; Wu M
    J Neurophysiol; 2023 Jul; 130(1):43-55. PubMed ID: 37198133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.