These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 18854915)

  • 21. Reduced Short-Latency Afferent Inhibition Indicates Impaired Sensorimotor Integrity During Migraine Attacks.
    Alaydin HC; Vuralli D; Keceli Y; Can E; Cengiz B; Bolay H
    Headache; 2019 Jun; 59(6):906-914. PubMed ID: 31106418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between the changes in M1 excitability after motor learning and arousal state as assessed by short-latency afferent inhibition.
    Koizume Y; Hirano M; Kubota S; Tanaka S; Funase K
    Behav Brain Res; 2017 Jul; 330():56-62. PubMed ID: 28522223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Short-latency afferent inhibition and somato-sensory evoked potentials during the migraine cycle: surrogate markers of a cycling cholinergic thalamo-cortical drive?
    Coppola G; Di Lenola D; Abagnale C; Ferrandes F; Sebastianelli G; Casillo F; Di Lorenzo C; Serrao M; Evangelista M; Schoenen J; Pierelli F
    J Headache Pain; 2020 Apr; 21(1):34. PubMed ID: 32299338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The distribution and reliability of TMS-evoked short- and long-latency afferent interactions.
    Toepp SL; Turco CV; Rehsi RS; Nelson AJ
    PLoS One; 2021; 16(12):e0260663. PubMed ID: 34905543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo functional evaluation of central cholinergic circuits in vascular dementia.
    Di Lazzaro V; Pilato F; Dileone M; Profice P; Marra C; Ranieri F; Quaranta D; Gainotti G; Tonali PA
    Clin Neurophysiol; 2008 Nov; 119(11):2494-500. PubMed ID: 18829384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hemispheric asymmetry and somatotopy of afferent inhibition in healthy humans.
    Helmich RC; Bäumer T; Siebner HR; Bloem BR; Münchau A
    Exp Brain Res; 2005 Nov; 167(2):211-9. PubMed ID: 16034577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Short-latency afferent inhibition during selective finger movement.
    Voller B; St Clair Gibson A; Dambrosia J; Pirio Richardson S; Lomarev M; Dang N; Hallett M
    Exp Brain Res; 2006 Feb; 169(2):226-31. PubMed ID: 16284755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Association of short- and long-latency afferent inhibition with human behavior.
    Turco CV; Toepp SL; Foglia SD; Dans PW; Nelson AJ
    Clin Neurophysiol; 2021 Jul; 132(7):1462-1480. PubMed ID: 34030051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reliability of transcranial magnetic stimulation measures of afferent inhibition.
    Turco CV; Pesevski A; McNicholas PD; Beaulieu LD; Nelson AJ
    Brain Res; 2019 Nov; 1723():146394. PubMed ID: 31425680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Short latency afferent inhibition differs among the subtypes of mild cognitive impairment.
    Nardone R; Bergmann J; Christova M; Caleri F; Tezzon F; Ladurner G; Trinka E; Golaszewski S
    J Neural Transm (Vienna); 2012 Apr; 119(4):463-71. PubMed ID: 22016008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective decline in information processing in subgroups of multiple sclerosis: an 8-year longitudinal study.
    Bergendal G; Fredrikson S; Almkvist O
    Eur Neurol; 2007; 57(4):193-202. PubMed ID: 17272938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short-afferent inhibition and cognitive impairment in Parkinson's disease: A quantitative review and challenges.
    Martin-Rodriguez JF; Mir P
    Neurosci Lett; 2020 Feb; 719():133679. PubMed ID: 29960056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impaired short- and long-latency afferent inhibition in amyotrophic lateral sclerosis.
    Cengiz B; Fidanci H; Kiyak Keçeli Y; Baltaci H; KuruoĞlu R
    Muscle Nerve; 2019 Jun; 59(6):699-704. PubMed ID: 30847934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Rao's Brief Repeatable Battery in the study of cognition in different multiple sclerosis phenotypes: application of normative data in a Serbian population.
    Dackovic J; Pekmezovic T; Mesaros S; Dujmovic I; Stojsavljevic N; Martinovic V; Drulovic J
    Neurol Sci; 2016 Sep; 37(9):1475-81. PubMed ID: 27207679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS.
    Fischer M; Orth M
    Brain Stimul; 2011 Oct; 4(4):202-9. PubMed ID: 22032735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring cognitive reserve in multiple sclerosis: New findings from a cross-sectional study.
    Nunnari D; De Cola MC; Costa A; Rifici C; Bramanti P; Marino S
    J Clin Exp Neuropsychol; 2016 Dec; 38(10):1158-67. PubMed ID: 27410680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Short latency afferent inhibition: Effects of ageing.
    Yarnall AJ; Ho BS; Eshun E; David R; Rochester L; Burn DJ; Baker MR
    Clin Neurophysiol; 2016 Jun; 127(6):2410-3. PubMed ID: 27178860
    [No Abstract]   [Full Text] [Related]  

  • 38. Normalization of sensorimotor integration by repetitive transcranial magnetic stimulation in cervical dystonia.
    Zittel S; Helmich RC; Demiralay C; Münchau A; Bäumer T
    J Neurol; 2015 Aug; 262(8):1883-9. PubMed ID: 26016685
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Verbal fluency deficits in clinically isolated syndrome suggestive of multiple sclerosis.
    Viterbo RG; Iaffaldano P; Trojano M
    J Neurol Sci; 2013 Jul; 330(1-2):56-60. PubMed ID: 23628466
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cortical hypoexcitability in chronic smokers? A transcranial magnetic stimulation study.
    Lang N; Hasan A; Sueske E; Paulus W; Nitsche MA
    Neuropsychopharmacology; 2008 Sep; 33(10):2517-23. PubMed ID: 18059439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.