These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18854950)

  • 1. Cardiac cells implanted into a cylindrical, vascularized chamber in vivo: pressure generation and morphology.
    Birla RK; Dhawan V; Dow DE; Huang YC; Brown DL
    Biotechnol Lett; 2009 Feb; 31(2):191-201. PubMed ID: 18854950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force characteristics of in vivo tissue-engineered myocardial constructs using varying cell seeding densities.
    Birla R; Dhawan V; Huang YC; Lytle I; Tiranathanagul K; Brown D
    Artif Organs; 2008 Sep; 32(9):684-91. PubMed ID: 18684210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac tissue engineering in an in vivo vascularized chamber.
    Morritt AN; Bortolotto SK; Dilley RJ; Han X; Kompa AR; McCombe D; Wright CE; Itescu S; Angus JA; Morrison WA
    Circulation; 2007 Jan; 115(3):353-60. PubMed ID: 17200440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and fabrication of heart muscle using scaffold-based tissue engineering.
    Blan NR; Birla RK
    J Biomed Mater Res A; 2008 Jul; 86(1):195-208. PubMed ID: 17972281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-perfusion for cardiac tissue engineering: development of a bench-top system for the culture of primary cardiac cells.
    Khait L; Hecker L; Radnoti D; Birla RK
    Ann Biomed Eng; 2008 May; 36(5):713-25. PubMed ID: 18274906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo conditioning of tissue-engineered heart muscle improves contractile performance.
    Birla RK; Borschel GH; Dennis RG
    Artif Organs; 2005 Nov; 29(11):866-75. PubMed ID: 16266299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated experimental-computational approach for the study of engineered cartilage constructs subjected to combined regimens of hydrostatic pressure and interstitial perfusion.
    Moretti M; Freed LE; Padera RF; Laganà K; Boschetti F; Raimondi MT
    Biomed Mater Eng; 2008; 18(4-5):273-8. PubMed ID: 19065033
    [No Abstract]   [Full Text] [Related]  

  • 8. Contractile three-dimensional bioengineered heart muscle for myocardial regeneration.
    Huang YC; Khait L; Birla RK
    J Biomed Mater Res A; 2007 Mar; 80(3):719-31. PubMed ID: 17154158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a biological ventricular assist device: preliminary data from a small animal model.
    Yildirim Y; Naito H; Didié M; Karikkineth BC; Biermann D; Eschenhagen T; Zimmermann WH
    Circulation; 2007 Sep; 116(11 Suppl):I16-23. PubMed ID: 17846298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Experimental study of cardiac muscle tissue engineering in bioreactor].
    Liu X; Wang CY; Guo XM; OuYang WQ
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2003 Feb; 25(1):7-12. PubMed ID: 12905598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering.
    Barash Y; Dvir T; Tandeitnik P; Ruvinov E; Guterman H; Cohen S
    Tissue Eng Part C Methods; 2010 Dec; 16(6):1417-26. PubMed ID: 20367291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a microperfusion system for the culture of bioengineered heart muscle.
    Hecker L; Khait L; Radnoti D; Birla R
    ASAIO J; 2008; 54(3):284-94. PubMed ID: 18496279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myocardial engineering in vivo: formation and characterization of contractile, vascularized three-dimensional cardiac tissue.
    Birla RK; Borschel GH; Dennis RG; Brown DL
    Tissue Eng; 2005; 11(5-6):803-13. PubMed ID: 15998220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct cell-to-fiber junctions are critical for the establishment of cardiotypical phenotype in a 3D bioartificial environment.
    Kofidis T; Balsam L; de Bruin J; Robbins RC
    Med Eng Phys; 2004 Mar; 26(2):157-63. PubMed ID: 15036183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-engineered axially vascularized contractile skeletal muscle.
    Borschel GH; Dow DE; Dennis RG; Brown DL
    Plast Reconstr Surg; 2006 Jun; 117(7):2235-42. PubMed ID: 16772923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of oxygen tension and pH in a bioreactor for cartilage tissue engineering.
    Das R; Kreukniet M; Oostra J; van Osch G; Weinans H; Jahr H
    Biomed Mater Eng; 2008; 18(4-5):279-82. PubMed ID: 19065034
    [No Abstract]   [Full Text] [Related]  

  • 17. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues.
    Shimizu T; Sekine H; Yang J; Isoi Y; Yamato M; Kikuchi A; Kobayashi E; Okano T
    FASEB J; 2006 Apr; 20(6):708-10. PubMed ID: 16439619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a peritoneal-generated cardiac patch in a rat model of heterotopic heart transplantation.
    Amir G; Miller L; Shachar M; Feinberg MS; Holbova R; Cohen S; Leor J
    Cell Transplant; 2009; 18(3):275-82. PubMed ID: 19558776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate.
    Cimetta E; Pizzato S; Bollini S; Serena E; De Coppi P; Elvassore N
    Biomed Microdevices; 2009 Apr; 11(2):389-400. PubMed ID: 18987976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating the functional performance of bioengineered heart muscle using growth factor stimulation.
    Huang YC; Khait L; Birla RK
    Ann Biomed Eng; 2008 Aug; 36(8):1372-82. PubMed ID: 18500554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.