BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18855071)

  • 1. The influence of thyroid hormone deficiency on the development of cochlear nonlinearities.
    Song L; McGee J; Walsh EJ
    J Assoc Res Otolaryngol; 2008 Dec; 9(4):464-76. PubMed ID: 18855071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of cochlear amplification, frequency tuning, and two-tone suppression in the mouse.
    Song L; McGee J; Walsh EJ
    J Neurophysiol; 2008 Jan; 99(1):344-55. PubMed ID: 17989242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of auditory brainstem responses (ABRs) in Tshr mutant mice derived from euthyroid and hypothyroid dams.
    Sprenkle PM; McGee J; Bertoni JM; Walsh EJ
    J Assoc Res Otolaryngol; 2001 Dec; 2(4):330-47. PubMed ID: 11833607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consequences of combined maternal, fetal and persistent postnatal hypothyroidism on the development of auditory function in Tshrhyt mutant mice.
    Song L; McGee JA; Walsh EJ
    Brain Res; 2006 Jul; 1101(1):59-72. PubMed ID: 16780814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consequences of hypothyroidism on auditory system function in Tshr mutant (hyt) mice.
    Sprenkle PM; McGee J; Bertoni JM; Walsh EJ
    J Assoc Res Otolaryngol; 2001 Dec; 2(4):312-29. PubMed ID: 11833606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression tuning of distortion-product otoacoustic emissions: results from cochlear mechanics simulation.
    Liu YW; Neely ST
    J Acoust Soc Am; 2013 Feb; 133(2):951-61. PubMed ID: 23363112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prevention of auditory dysfunction in hypothyroid Tshr mutant mice by thyroxin treatment during development.
    Sprenkle PM; McGee J; Bertoni JM; Walsh EJ
    J Assoc Res Otolaryngol; 2001 Dec; 2(4):348-61. PubMed ID: 11833608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hearing loss in athyroid pax8 knockout mice and effects of thyroxine substitution.
    Christ S; Biebel UW; Hoidis S; Friedrichsen S; Bauer K; Smolders JW
    Audiol Neurootol; 2004; 9(2):88-106. PubMed ID: 14981357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice.
    Varghese GI; Zhu X; Frisina RD
    Hear Res; 2005 Nov; 209(1-2):60-7. PubMed ID: 16061336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distortion product otoacoustic emissions and auditory evoked potentials in the hedgehog tenrec, Echinops telfairi.
    Drexl M; Faulstich M; Von Stebut B; Radtke-Schuller S; Kössl M
    J Assoc Res Otolaryngol; 2003 Dec; 4(4):555-64. PubMed ID: 14569428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-tone suppression of stimulus frequency otoacoustic emissions.
    Keefe DH; Ellison JC; Fitzpatrick DF; Gorga MP
    J Acoust Soc Am; 2008 Mar; 123(3):1479-94. PubMed ID: 18345837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of cochlear active mechanisms in tinnitus subjects with normal hearing sensitivity: multiparametric recording of evoked otoacoustic emissions and contralateral suppression.
    Paglialonga A; Del Bo L; Ravazzani P; Tognola G
    Auris Nasus Larynx; 2010 Jun; 37(3):291-8. PubMed ID: 19879078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-level psychophysical tuning curves: forward masking in normal-hearing and hearing-impaired listeners.
    Nelson DA
    J Speech Hear Res; 1991 Dec; 34(6):1233-49. PubMed ID: 1787705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient evoked otoacoustic emission latency and estimates of cochlear tuning in preterm neonates.
    Moleti A; Sisto R; Paglialonga A; Sibella F; Anteunis L; Parazzini M; Tognola G
    J Acoust Soc Am; 2008 Nov; 124(5):2984-94. PubMed ID: 19045786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of contralateral acoustic stimulation on the quadratic distortion product f2-f1 in humans.
    Wittekindt A; Gaese BH; Kössl M
    Hear Res; 2009 Jan; 247(1):27-33. PubMed ID: 18951964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristic findings of auditory brainstem response and otoacoustic emission in the Bronx waltzer mouse.
    Inagaki M; Kon K; Suzuki S; Kobayashi N; Kaga M; Nanba E
    Brain Dev; 2006 Nov; 28(10):617-24. PubMed ID: 16730938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary thyroid hormone replacement ameliorates hearing deficits in hypothyroid mice.
    Karolyi IJ; Dootz GA; Halsey K; Beyer L; Probst FJ; Johnson KR; Parlow AF; Raphael Y; Dolan DF; Camper SA
    Mamm Genome; 2007 Aug; 18(8):596-608. PubMed ID: 17899304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thyroid hormone deficiency before the onset of hearing causes irreversible damage to peripheral and central auditory systems.
    Knipper M; Zinn C; Maier H; Praetorius M; Rohbock K; Köpschall I; Zimmermann U
    J Neurophysiol; 2000 May; 83(5):3101-12. PubMed ID: 10805704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.