These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 1885531)
1. Regulation of phenolic catabolism in Rhizobium leguminosarum biovar trifolii. Parke D; Rynne F; Glenn A J Bacteriol; 1991 Sep; 173(17):5546-50. PubMed ID: 1885531 [TBL] [Abstract][Full Text] [Related]
2. Supraoperonic clustering of pca genes for catabolism of the phenolic compound protocatechuate in Agrobacterium tumefaciens. Parke D J Bacteriol; 1995 Jul; 177(13):3808-17. PubMed ID: 7601847 [TBL] [Abstract][Full Text] [Related]
3. Enzymes of the beta-ketoadipate pathway are inducible in Rhizobium and Agrobacterium spp. and constitutive in Bradyrhizobium spp. Parke D; Ornston LN J Bacteriol; 1986 Jan; 165(1):288-92. PubMed ID: 3941043 [TBL] [Abstract][Full Text] [Related]
4. Positive regulation of phenolic catabolism in Agrobacterium tumefaciens by the pcaQ gene in response to beta-carboxy-cis,cis-muconate. Parke D J Bacteriol; 1993 Jun; 175(11):3529-35. PubMed ID: 8501056 [TBL] [Abstract][Full Text] [Related]
5. Comparative genomics of the protocatechuate branch of the β-ketoadipate pathway in the Roseobacter lineage. Alejandro-Marín CM; Bosch R; Nogales B Mar Genomics; 2014 Oct; 17():25-33. PubMed ID: 24906178 [TBL] [Abstract][Full Text] [Related]
6. Constitutive synthesis of enzymes of the protocatechuate pathway and of the beta-ketoadipate uptake system in mutant strains of Pseudomonas putida. Parke D; Ornston LN J Bacteriol; 1976 Apr; 126(1):272-81. PubMed ID: 1262305 [TBL] [Abstract][Full Text] [Related]
7. Cloning and genetic organization of the pca gene cluster from Acinetobacter calcoaceticus. Doten RC; Ngai KL; Mitchell DJ; Ornston LN J Bacteriol; 1987 Jul; 169(7):3168-74. PubMed ID: 3036773 [TBL] [Abstract][Full Text] [Related]
8. PcaU, a transcriptional activator of genes for protocatechuate utilization in Acinetobacter. Gerischer U; Segura A; Ornston LN J Bacteriol; 1998 Mar; 180(6):1512-24. PubMed ID: 9515921 [TBL] [Abstract][Full Text] [Related]
9. Novel nuclear magnetic resonance spectroscopy methods demonstrate preferential carbon source utilization by Acinetobacter calcoaceticus. Gaines GL; Smith L; Neidle EL J Bacteriol; 1996 Dec; 178(23):6833-41. PubMed ID: 8955304 [TBL] [Abstract][Full Text] [Related]
10. Key enzymes of the protocatechuate branch of the beta-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum. Shen X; Liu S Sci China C Life Sci; 2005 Jun; 48(3):241-9. PubMed ID: 16092756 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional cross-regulation of the catechol and protocatechuate branches of the beta-ketoadipate pathway contributes to carbon source-dependent expression of the Acinetobacter sp. strain ADP1 pobA gene. Brzostowicz PC; Reams AB; Clark TJ; Neidle EL Appl Environ Microbiol; 2003 Mar; 69(3):1598-606. PubMed ID: 12620848 [TBL] [Abstract][Full Text] [Related]
12. Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida beta-ketoadipate pathway. Nichols NN; Harwood CS J Bacteriol; 1995 Dec; 177(24):7033-40. PubMed ID: 8522507 [TBL] [Abstract][Full Text] [Related]
13. Functional analysis of the protocatechuate branch of the β-ketoadipate pathway in Aspergillus niger. Sgro M; Chow N; Olyaei F; Arentshorst M; Geoffrion N; Ram AFJ; Powlowski J; Tsang A J Biol Chem; 2023 Aug; 299(8):105003. PubMed ID: 37399977 [TBL] [Abstract][Full Text] [Related]
14. The fluorene catabolic linear plasmid in Terrabacter sp. strain DBF63 carries the beta-ketoadipate pathway genes, pcaRHGBDCFIJ, also found in proteobacteria. Habe H; Chung JS; Ishida A; Kasuga K; Ide K; Takemura T; Nojiri H; Yamane H; Omori T Microbiology (Reading); 2005 Nov; 151(Pt 11):3713-3722. PubMed ID: 16272392 [TBL] [Abstract][Full Text] [Related]
15. Metabolism of aromatic compounds by Caulobacter crescentus. Chatterjee DK; Bourquin AW J Bacteriol; 1987 May; 169(5):1993-6. PubMed ID: 3571158 [TBL] [Abstract][Full Text] [Related]
16. Characterization of PcaQ, a LysR-type transcriptional activator required for catabolism of phenolic compounds, from Agrobacterium tumefaciens. Parke D J Bacteriol; 1996 Jan; 178(1):266-72. PubMed ID: 8550427 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the beta-ketoadipate pathway in Sinorhizobium meliloti. MacLean AM; MacPherson G; Aneja P; Finan TM Appl Environ Microbiol; 2006 Aug; 72(8):5403-13. PubMed ID: 16885292 [TBL] [Abstract][Full Text] [Related]
18. Beta-ketoadipic acid and muconolactone production from a lignin-related aromatic compound through the protocatechuate 3,4-metabolic pathway. Okamura-Abe Y; Abe T; Nishimura K; Kawata Y; Sato-Izawa K; Otsuka Y; Nakamura M; Kajita S; Masai E; Sonoki T; Katayama Y J Biosci Bioeng; 2016 Jun; 121(6):652-658. PubMed ID: 26723258 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide investigation and functional characterization of the beta-ketoadipate pathway in the nitrogen-fixing and root-associated bacterium Pseudomonas stutzeri A1501. Li D; Yan Y; Ping S; Chen M; Zhang W; Li L; Lin W; Geng L; Liu W; Lu W; Lin M BMC Microbiol; 2010 Feb; 10():36. PubMed ID: 20137101 [TBL] [Abstract][Full Text] [Related]
20. Conservation of PcaQ, a transcriptional activator of pca genes for catabolism of phenolic compounds, in Agrobacterium tumefaciens and Rhizobium species. Parke D J Bacteriol; 1996 Jun; 178(12):3671-5. PubMed ID: 8655573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]