These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
563 related articles for article (PubMed ID: 18855361)
1. Redefinition of rubisco carboxylase reaction reveals origin of water for hydration and new roles for active-site residues. Kannappan B; Gready JE J Am Chem Soc; 2008 Nov; 130(45):15063-80. PubMed ID: 18855361 [TBL] [Abstract][Full Text] [Related]
2. Quantum chemical analysis of the enolization of ribulose bisphosphate: the first hurdle in the fixation of CO2 by Rubisco. King WA; Gready JE; Andrews TJ Biochemistry; 1998 Nov; 37(44):15414-22. PubMed ID: 9799503 [TBL] [Abstract][Full Text] [Related]
3. CO(2) fixation by Rubisco: computational dissection of the key steps of carboxylation, hydration, and C-C bond cleavage. Mauser H; King WA; Gready JE; Andrews TJ J Am Chem Soc; 2001 Nov; 123(44):10821-9. PubMed ID: 11686683 [TBL] [Abstract][Full Text] [Related]
4. Putative functional role for the invariant aspartate 263 residue of Rhodospirillum rubrum Rubisco. Liggins JR; Gready JE Biochemistry; 2009 Mar; 48(10):2226-36. PubMed ID: 19231887 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of Oxygenase-Pathway Reactions Catalyzed by Rubisco from Large-Scale Kohn-Sham Density Functional Calculations. Kannappan B; Cummins PL; Gready JE J Phys Chem B; 2019 Apr; 123(13):2833-2843. PubMed ID: 30845802 [TBL] [Abstract][Full Text] [Related]
6. Large structures at high resolution: the 1.6 A crystal structure of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase complexed with 2-carboxyarabinitol bisphosphate. Andersson I J Mol Biol; 1996 May; 259(1):160-74. PubMed ID: 8648644 [TBL] [Abstract][Full Text] [Related]
7. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations. Valiev M; Kawai R; Adams JA; Weare JH J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447 [TBL] [Abstract][Full Text] [Related]
8. Diffusion and interactions of carbon dioxide and oxygen in the vicinity of the active site of Rubisco: molecular dynamics and quantum chemical studies. El-Hendawy MM; Garate JA; English NJ; O'Reilly S; Mooney DA J Chem Phys; 2012 Oct; 137(14):145103. PubMed ID: 23061867 [TBL] [Abstract][Full Text] [Related]
9. High substrate specificity factor ribulose bisphosphate carboxylase/oxygenase from eukaryotic marine algae and properties of recombinant cyanobacterial RubiSCO containing "algal" residue modifications. Read BA; Tabita FR Arch Biochem Biophys; 1994 Jul; 312(1):210-8. PubMed ID: 8031129 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of activated ribulose-1,5-bisphosphate carboxylase/oxygenase from green alga Chlamydomonas reinhardtii complexed with 2-carboxyarabinitol-1,5-bisphosphate. Mizohata E; Matsumura H; Okano Y; Kumei M; Takuma H; Onodera J; Kato K; Shibata N; Inoue T; Yokota A; Kai Y J Mol Biol; 2002 Feb; 316(3):679-91. PubMed ID: 11866526 [TBL] [Abstract][Full Text] [Related]
11. The transition between the open and closed states of rubisco is triggered by the inter-phosphate distance of the bound bisphosphate. Duff AP; Andrews TJ; Curmi PM J Mol Biol; 2000 May; 298(5):903-16. PubMed ID: 10801357 [TBL] [Abstract][Full Text] [Related]
12. Electrostatic fields at the active site of ribulose-1,5-bisphosphate carboxylase. Lu GG; Lindqvist Y; Schneider G Proteins; 1992 Feb; 12(2):117-27. PubMed ID: 1603801 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic diversity in the RuBisCO superfamily: the "enolase" in the methionine salvage pathway in Geobacillus kaustophilus. Imker HJ; Fedorov AA; Fedorov EV; Almo SC; Gerlt JA Biochemistry; 2007 Apr; 46(13):4077-89. PubMed ID: 17352497 [TBL] [Abstract][Full Text] [Related]
14. Quantum chemical modeling of the kinetic isotope effect of the carboxylation step in RuBisCO. Götze JP; Saalfrank P J Mol Model; 2012 May; 18(5):1877-83. PubMed ID: 21866315 [TBL] [Abstract][Full Text] [Related]
15. Effect of Mg2+ on the structure and function of ribulose-1,5-bisphosphate carboxylase/oxygenase. Liang C; Xiao W; Hao H; Xiaoqing L; Chao L; Lei Z; Fashui H Biol Trace Elem Res; 2008 Mar; 121(3):249-57. PubMed ID: 17968513 [TBL] [Abstract][Full Text] [Related]
16. The structure of the complex between rubisco and its natural substrate ribulose 1,5-bisphosphate. Taylor TC; Andersson I J Mol Biol; 1997 Jan; 265(4):432-44. PubMed ID: 9034362 [TBL] [Abstract][Full Text] [Related]
17. Slow deactivation of ribulose 1,5-bisphosphate carboxylase/oxygenase elucidated by mathematical models. Witzel F; Götze J; Ebenhöh O FEBS J; 2010 Feb; 277(4):931-50. PubMed ID: 20067527 [TBL] [Abstract][Full Text] [Related]
18. Structural analysis of altered large-subunit loop-6/carboxy-terminus interactions that influence catalytic efficiency and CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Karkehabadi S; Satagopan S; Taylor TC; Spreitzer RJ; Andersson I Biochemistry; 2007 Oct; 46(39):11080-9. PubMed ID: 17824672 [TBL] [Abstract][Full Text] [Related]
19. Regulation of Rubisco activase and its interaction with Rubisco. Portis AR; Li C; Wang D; Salvucci ME J Exp Bot; 2008; 59(7):1597-604. PubMed ID: 18048372 [TBL] [Abstract][Full Text] [Related]
20. Revised mechanism of carboxylation of ribulose-1,5-biphosphate by rubisco from large scale quantum chemical calculations. Cummins PL; Kannappan B; Gready JE J Comput Chem; 2018 Aug; 39(21):1656-1665. PubMed ID: 29756365 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]